These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 7585248)

  • 1. Enhanced self-splicing of Physarum polycephalum intron 3 by a second group I intron.
    Rocheleau GA; Woodson SA
    RNA; 1995 Apr; 1(2):183-93. PubMed ID: 7585248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Requirements for self-splicing of a group I intron from Physarum polycephalum.
    Rocheleau GA; Woodson SA
    Nucleic Acids Res; 1994 Oct; 22(20):4315-20. PubMed ID: 7937160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the self-splicing products of a mobile intron from the nuclear rDNA of Physarum polycephalum.
    Ruoff B; Johansen S; Vogt VM
    Nucleic Acids Res; 1992 Nov; 20(22):5899-906. PubMed ID: 1461722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Destabilizing effect of an rRNA stem-loop on an attenuator hairpin in the 5' exon of the Tetrahymena pre-rRNA.
    Cao Y; Woodson SA
    RNA; 1998 Aug; 4(8):901-14. PubMed ID: 9701282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A self-splicing group I intron in the nuclear pre-rRNA of the green alga, Ankistrodesmus stipitatus.
    Dávila-Aponte JA; Huss VA; Sogin ML; Cech TR
    Nucleic Acids Res; 1991 Aug; 19(16):4429-36. PubMed ID: 1886767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-splicing of the Tetrahymena pre-rRNA is decreased by misfolding during transcription.
    Emerick VL; Woodson SA
    Biochemistry; 1993 Dec; 32(50):14062-7. PubMed ID: 8268185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of rate-determining conformational changes during self-splicing of the Tetrahymena intron.
    Emerick VL; Pan J; Woodson SA
    Biochemistry; 1996 Oct; 35(41):13469-77. PubMed ID: 8873616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A tertiary interaction in the Tetrahymena intron contributes to selection of the 5' splice site.
    Downs WD; Cech TR
    Genes Dev; 1994 May; 8(10):1198-211. PubMed ID: 7926724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A shortened form of the Tetrahymena thermophila group I intron can catalyze the complete splicing reaction in trans.
    Sargueil B; Tanner NK
    J Mol Biol; 1993 Oct; 233(4):629-43. PubMed ID: 8411170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A tyrosyl-tRNA synthetase can function similarly to an RNA structure in the Tetrahymena ribozyme.
    Mohr G; Caprara MG; Guo Q; Lambowitz AM
    Nature; 1994 Jul; 370(6485):147-50. PubMed ID: 8022484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-specific reverse splicing of a HEG-containing group I intron in ribosomal RNA.
    Birgisdottir AB; Johansen S
    Nucleic Acids Res; 2005; 33(6):2042-51. PubMed ID: 15817568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo facilitation of Tetrahymena group I intron splicing in Escherichia coli pre-ribosomal RNA.
    Zhang F; Ramsay ES; Woodson SA
    RNA; 1995 May; 1(3):284-92. PubMed ID: 7489500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Close relationship between certain nuclear and mitochondrial introns. Implications for the mechanism of RNA splicing.
    Waring RB; Scazzocchio C; Brown TA; Davies RW
    J Mol Biol; 1983 Jul; 167(3):595-605. PubMed ID: 6876158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strain-dependent sequence heterogeneity in the nuclear group I introns and large subunit ribosomal RNA in Physarum polycephalum.
    Johansen S
    DNA Seq; 1991; 2(3):193-6. PubMed ID: 1818756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional alpha-fragment of beta-galactosidase can be expressed from the mobile group I intron PpLSU3 embedded in yeast pre-ribosomal RNA derived from the chromosomal rDNA locus.
    Lin J; Vogt VM
    Nucleic Acids Res; 2000 Mar; 28(6):1428-38. PubMed ID: 10684939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exon sequences distant from the splice junction are required for efficient self-splicing of the Tetrahymena IVS.
    Woodson SA
    Nucleic Acids Res; 1992 Aug; 20(15):4027-32. PubMed ID: 1508687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localization of the newly initiated and processed ribosomal primary transcripts during the mitotic cycle in Physarum polycephalum.
    Pierron G; Puvion-Dutilleul F
    Exp Cell Res; 1996 Dec; 229(2):407-20. PubMed ID: 8986624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antibiotic-induced oligomerisation of group I intron RNA.
    Wank H; Schroeder R
    J Mol Biol; 1996 Apr; 258(1):53-61. PubMed ID: 8613991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-splicing of a group I intron reveals partitioning of native and misfolded RNA populations in yeast.
    Jackson SA; Koduvayur S; Woodson SA
    RNA; 2006 Dec; 12(12):2149-59. PubMed ID: 17135489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-splicing of the Tetrahymena intron from mRNA in mammalian cells.
    Hagen M; Cech TR
    EMBO J; 1999 Nov; 18(22):6491-500. PubMed ID: 10562561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.