These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 7585357)
1. Regulation of valine catabolism by ammonium in Streptomyces ambofaciens, producer of spiramycin. Lounès A; Lebrihi A; Benslimane C; Lefebvre G; Germain P Can J Microbiol; 1995 Sep; 41(9):800-8. PubMed ID: 7585357 [TBL] [Abstract][Full Text] [Related]
2. Glycerol effect on spiramycin production and valine catabolism in Streptomyces ambofaciens. Lounès A; Lebrihi A; Benslimane C; Lefebvre G; Germain P Curr Microbiol; 1995 Nov; 31(5):304-11. PubMed ID: 7580801 [TBL] [Abstract][Full Text] [Related]
3. Amino acid catabolism and antibiotic synthesis: valine is a source of precursors for macrolide biosynthesis in Streptomyces ambofaciens and Streptomyces fradiae. Tang L; Zhang YX; Hutchinson CR J Bacteriol; 1994 Oct; 176(19):6107-19. PubMed ID: 7928973 [TBL] [Abstract][Full Text] [Related]
4. Regulation of spiramycin synthesis in Streptomyces ambofaciens: effects of glucose and inorganic phosphate. Lounès A; Lebrihi A; Benslimane C; Lefebvre G; Germain P Appl Microbiol Biotechnol; 1996 Mar; 45(1-2):204-11. PubMed ID: 8920193 [TBL] [Abstract][Full Text] [Related]
5. Relationship between valine, fatty acids, and spiramycin biosynthesis in Streptomyces ambofaciens. Laakel M; Lebrihi A; Khaoua S; Schneider F; Lefebvre G; Germain P Can J Microbiol; 1994 Aug; 40(8):672-6. PubMed ID: 7922889 [TBL] [Abstract][Full Text] [Related]
6. Effect of ammonium ions on spiramycin biosynthesis in Streptomyces ambofaciens. Lebrihi A; Lamsaif D; Lefebvre G; Germain P Appl Microbiol Biotechnol; 1992 Jun; 37(3):382-7. PubMed ID: 1368912 [TBL] [Abstract][Full Text] [Related]
7. Influence of short-chain fatty acids on the production of spiramycin by Streptomyces ambofaciens. Khaoua S; Lebrihi A; Laakel M; Schneider F; Germain P; Lefebvre G Appl Microbiol Biotechnol; 1992 Mar; 36(6):763-7. PubMed ID: 1369365 [TBL] [Abstract][Full Text] [Related]
8. Nitrogen source governs the patterns of growth and pristinamycin production in 'Streptomyces pristinaespiralis'. Voelker F; Altaba S Microbiology (Reading); 2001 Sep; 147(Pt 9):2447-2459. PubMed ID: 11535785 [TBL] [Abstract][Full Text] [Related]
9. [Effects of ammonium on components of biotechspiramycin]. Lu Y; Li ZL; Wang YH; Chu J; Zhuang YP; Zhang SL Wei Sheng Wu Xue Bao; 2006 Dec; 46(6):928-33. PubMed ID: 17302156 [TBL] [Abstract][Full Text] [Related]
10. Influence of dextrins on the production of spiramycin and impurity components by Streptomyces ambofaciens. Yao K; Gao S; Wu Y; Zhao Z; Wang W; Mao Q Folia Microbiol (Praha); 2018 Jan; 63(1):105-113. PubMed ID: 28823059 [TBL] [Abstract][Full Text] [Related]
11. Effects of glucose limitation on biomass and spiramycin production by Streptomyces ambofaciens. Colombié V; Bideaux C; Goma G; Uribelarrea JL Bioprocess Biosyst Eng; 2005 Nov; 28(1):55-61. PubMed ID: 16195896 [TBL] [Abstract][Full Text] [Related]
12. Effect of ammonium ion, inorganic phosphate and amino acids on the biosynthesis of protylonolide, a precursor of tylosin aglycone. Omura S; Tanaka Y; Mamada H; Masuma R J Antibiot (Tokyo); 1984 May; 37(5):494-502. PubMed ID: 6735923 [TBL] [Abstract][Full Text] [Related]
13. Milbemycins, a new family of macrolide antibiotics. Studies on the biosynthesis of milbemycins alpha 2, alpha 4 and D using 13C labeled precursors. Ono M; Mishima H; Takiguchi Y; Terao M; Kobayashi H; Iwasaki S; Okuda S J Antibiot (Tokyo); 1983 Aug; 36(8):991-1000. PubMed ID: 6630070 [TBL] [Abstract][Full Text] [Related]
14. Improved production of spiramycin by mutant Streptomyces ambofaciens. Jin ZH; Cen PL J Zhejiang Univ Sci; 2004 Jun; 5(6):689-95. PubMed ID: 15101103 [TBL] [Abstract][Full Text] [Related]
15. Regulation of the biosynthesis of the macrolide antibiotic spiramycin in Streptomyces ambofaciens. Karray F; Darbon E; Nguyen HC; Gagnat J; Pernodet JL J Bacteriol; 2010 Nov; 192(21):5813-21. PubMed ID: 20817767 [TBL] [Abstract][Full Text] [Related]
16. The genetic basis of precursor supply for the biosynthesis of macrolide and polyether antibiotics. Tang L; Zhang YX; Hutchinson CR Ann N Y Acad Sci; 1994 May; 721():105-16. PubMed ID: 8010660 [TBL] [Abstract][Full Text] [Related]
17. Regulation of expression of the valine (branched-chain amino acid) dehydrogenase-encoding gene from Streptomyces coelicolor. Tang L; Hutchinson CR Gene; 1995 Aug; 162(1):69-74. PubMed ID: 7557420 [TBL] [Abstract][Full Text] [Related]
18. Bioconversion and biosynthesis of 16-membered macrolide antibiotics. XIII. Regulation of spiramycin I 3-hydroxyl acylase formation by glucose, butyrate, and cerulenin. Kitao C; Ikeda H; Hamada H; Omura S J Antibiot (Tokyo); 1979 Jun; 32(6):593-9. PubMed ID: 468735 [TBL] [Abstract][Full Text] [Related]
19. Ammonium ion suppresses the biosynthesis of tylosin aglycone by interference with valine catabolism in Streptomyces fradiae. Omura S; Tanaka Y; Mamada H; Masuma R J Antibiot (Tokyo); 1983 Dec; 36(12):1792-4. PubMed ID: 6662823 [No Abstract] [Full Text] [Related]
20. Selection of Streptomyces ambofaciens mutants that produce large quantities of spiramycin and determination of optimal conditions for spiramycin production. Ford LM; Eaton TE; Godfrey OW Appl Environ Microbiol; 1990 Nov; 56(11):3511-4. PubMed ID: 2268160 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]