These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 7585885)

  • 1. Inhibition of the sarcolemmal Ca2+ pump in embryonic chick heart cells by mini-glucagon.
    Sauvadet A; Pecker F; Pavoine C
    Cell Calcium; 1995 Jul; 18(1):76-85. PubMed ID: 7585885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergistic actions of glucagon and miniglucagon on Ca2+ mobilization in cardiac cells.
    Sauvadet A; Rohn T; Pecker F; Pavoine C
    Circ Res; 1996 Jan; 78(1):102-9. PubMed ID: 8603492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arachidonic acid drives mini-glucagon action in cardiac cells.
    Sauvadet A; Rohn T; Pecker F; Pavoine C
    J Biol Chem; 1997 May; 272(19):12437-45. PubMed ID: 9139691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ca2+-antagonists inhibit the N-methyltransferase-dependent synthesis of phosphatidylcholine in the heart.
    Tappia PS; Okumura K; Kawabata K; Shah KR; Nijjar MS; Panagia V; Dhalla NS
    Mol Cell Biochem; 2001 May; 221(1-2):89-98. PubMed ID: 11506191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation of frog heart sarcolemma possessing (Ca2+ + Mg2+)-ATPase and Ca2+ pump activities.
    Morcos NC
    Biochim Biophys Acta; 1981 Apr; 643(1):55-62. PubMed ID: 6113007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects on the hepatocyte [Ca2+]i oscillator of inhibition of the plasma membrane Ca2+ pump by carboxyeosin or glucagon-(19-29).
    Green AK; Cobbold PH; Dixon CJ
    Cell Calcium; 1997 Aug; 22(2):99-109. PubMed ID: 9292228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Altered sarcolemmal calcium channel density and Ca(2+)-pump ATPase activity in tachycardia heart failure.
    Colston JT; Kumar P; Chambers JP; Freeman GL
    Cell Calcium; 1994 Nov; 16(5):349-56. PubMed ID: 7859249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altered mRNA abundance of calcium transport genes in cardiac myocytes induced by angiotensin II.
    Ju H; Scammel-La Fleur T; Dixon IM
    J Mol Cell Cardiol; 1996 May; 28(5):1119-28. PubMed ID: 8762048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sarcolemmal Ca2+ transport activities in cardiac hypertrophy caused by pressure overload.
    Nakanishi H; Makino N; Hata T; Matsui H; Yano K; Yanaga T
    Am J Physiol; 1989 Aug; 257(2 Pt 2):H349-56. PubMed ID: 2548404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cardiac membrane Ca(2+)-transport in alloxan-induced diabetes in rats.
    Golfman LS; Takeda N; Dhalla NS
    Diabetes Res Clin Pract; 1996 Jul; 31 Suppl():S73-7. PubMed ID: 8864644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Buffering of calcium influx by sarcoplasmic reticulum during the action potential in guinea-pig ventricular myocytes.
    Janczewski AM; Lakatta EG
    J Physiol; 1993 Nov; 471():343-63. PubMed ID: 8120810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heart sarcolemmal Ca2+ transport in endotoxin shock: I. Impairment of ATP-dependent Ca2+ transport.
    Wu LL; Liu MS
    Mol Cell Biochem; 1992 Jun; 112(2):125-33. PubMed ID: 1322488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of the ATP-dependent calcium uptake activity of heart sarcolemmal vesicles by endogenous cytosolic proteins.
    Narayanan N; Bedard P; Waraich TS; Godfrey N
    Mol Cell Biochem; 1989 Apr; 86(2):143-53. PubMed ID: 2549389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of ATP-dependent calcium transport and calcium-activated ATPase activities of cardiac sarcoplasmic reticulum and sarcolemma from rats of various ages.
    Narayanan N
    Mech Ageing Dev; 1987 Apr; 38(2):127-43. PubMed ID: 2955175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimulation of calcium pump activity in heart sarcolemma by timolol.
    Dzurba A; Ganguly PK; Beamish RE; Dhalla NS
    Can J Physiol Pharmacol; 1983 Mar; 61(3):240-4. PubMed ID: 6220800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial and sarcolemmal Ca2+ transport reduce [Ca2+]i during caffeine contractures in rabbit cardiac myocytes.
    Bassani RA; Bassani JW; Bers DM
    J Physiol; 1992; 453():591-608. PubMed ID: 1464847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of inotropic responses of the isolated rat hearts to vanadate.
    Shah KR; Matsubara T; Foerster DR; Xu YJ; Dhalla NS
    Int J Cardiol; 1995 Nov; 52(2):101-13. PubMed ID: 8749869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effect of cardenolids and sodium ion gradient on ATP-dependent Ca2+ accumulation in cardiac sarcolemmal vesicles].
    Preobrazhenskiĭ AN; Kupriianov VV; Saks VA; Grosse R; Spitzer E
    Biokhimiia; 1982 Jan; 47(1):126-36. PubMed ID: 6279179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sarcolemmal Na+-Ca2+ exchange and sarcoplasmic reticulum Ca2+ uptake in several cardiac preparations.
    Vetter R; Kemsies C; Schulze W
    Biomed Biochim Acta; 1987; 46(8-9):S375-81. PubMed ID: 2449183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An electrogenic Na+/Ca2+ antiporter in addition to the Ca2+ pump in cardiac sarcolemma.
    Lamers JM; Stinis JT
    Biochim Biophys Acta; 1981 Jan; 640(2):521-34. PubMed ID: 7213903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.