BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 7585956)

  • 1. The stabilization of repetitive tracts of DNA by variant repeats requires a functional DNA mismatch repair system.
    Heale SM; Petes TD
    Cell; 1995 Nov; 83(4):539-45. PubMed ID: 7585956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stabilization of microsatellite sequences by variant repeats in the yeast Saccharomyces cerevisiae.
    Petes TD; Greenwell PW; Dominska M
    Genetics; 1997 Jun; 146(2):491-8. PubMed ID: 9178000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair.
    Strand M; Prolla TA; Liskay RM; Petes TD
    Nature; 1993 Sep; 365(6443):274-6. PubMed ID: 8371783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microsatellite instability in yeast: dependence on repeat unit size and DNA mismatch repair genes.
    Sia EA; Kokoska RJ; Dominska M; Greenwell P; Petes TD
    Mol Cell Biol; 1997 May; 17(5):2851-8. PubMed ID: 9111357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Destabilization of simple repetitive DNA sequences by transcription in yeast.
    Wierdl M; Greene CN; Datta A; Jinks-Robertson S; Petes TD
    Genetics; 1996 Jun; 143(2):713-21. PubMed ID: 8725221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Instability of simple sequence DNA in Saccharomyces cerevisiae.
    Henderson ST; Petes TD
    Mol Cell Biol; 1992 Jun; 12(6):2749-57. PubMed ID: 1588966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromosome fragility at GAA tracts in yeast depends on repeat orientation and requires mismatch repair.
    Kim HM; Narayanan V; Mieczkowski PA; Petes TD; Krasilnikova MM; Mirkin SM; Lobachev KS
    EMBO J; 2008 Nov; 27(21):2896-906. PubMed ID: 18833189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Destabilization of CAG trinucleotide repeat tracts by mismatch repair mutations in yeast.
    Schweitzer JK; Livingston DM
    Hum Mol Genet; 1997 Mar; 6(3):349-55. PubMed ID: 9147637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Length of CTG.CAG repeats determines the influence of mismatch repair on genetic instability.
    Parniewski P; Jaworski A; Wells RD; Bowater RP
    J Mol Biol; 2000 Jun; 299(4):865-74. PubMed ID: 10843843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Replication stalling and heteroduplex formation within CAG/CTG trinucleotide repeats by mismatch repair.
    Viterbo D; Michoud G; Mosbach V; Dujon B; Richard GF
    DNA Repair (Amst); 2016 Jun; 42():94-106. PubMed ID: 27045900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relative rates of insertion and deletion mutations in dinucleotide repeats of various lengths in mismatch repair proficient mouse and mismatch repair deficient human cells.
    Yamada NA; Smith GA; Castro A; Roques CN; Boyer JC; Farber RA
    Mutat Res; 2002 Feb; 499(2):213-25. PubMed ID: 11827714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequencing homopolymer tracts and repetitive elements.
    Robbins CM; Hsu E; Gillevet PM
    Biotechniques; 1996 May; 20(5):862-4, 866-8. PubMed ID: 8723932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Background mutation frequency in microsatellite-unstable colorectal cancer.
    Sammalkorpi H; Alhopuro P; Lehtonen R; Tuimala J; Mecklin JP; Järvinen HJ; Jiricny J; Karhu A; Aaltonen LA
    Cancer Res; 2007 Jun; 67(12):5691-8. PubMed ID: 17575135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence interruptions confer differential stability at microsatellite alleles in mismatch repair-deficient cells.
    Bacon AL; Farrington SM; Dunlop MG
    Hum Mol Genet; 2000 Nov; 9(18):2707-13. PubMed ID: 11063729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homopolymer tract length dependent enrichments in functional regions of 27 eukaryotes and their novel dependence on the organism DNA (G+C)% composition.
    Zhou Y; Bizzaro JW; Marx KA
    BMC Genomics; 2004 Dec; 5():95. PubMed ID: 15598342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A conserved sequence motif within the exceptionally diverse telomeric sequences of budding yeasts.
    McEachern MJ; Blackburn EH
    Proc Natl Acad Sci U S A; 1994 Apr; 91(8):3453-7. PubMed ID: 8159768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stabilization of diverged tandem repeats by mismatch repair: evidence for deletion formation via a misaligned replication intermediate.
    Lovett ST; Feschenko VV
    Proc Natl Acad Sci U S A; 1996 Jul; 93(14):7120-4. PubMed ID: 8692955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Most meiotic CAG repeat tract-length alterations in yeast are SPO11 dependent.
    Jankowski C; Nag DK
    Mol Genet Genomics; 2002 Mar; 267(1):64-70. PubMed ID: 11919716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular basis of genetic instability of triplet repeats.
    Wells RD
    J Biol Chem; 1996 Feb; 271(6):2875-8. PubMed ID: 8621672
    [No Abstract]   [Full Text] [Related]  

  • 20. Selection for genome instability by DNA damage in human cells: unstable microsatellites and their consequences for tumourigenesis.
    Hampson R
    Radiat Oncol Investig; 1997; 5(3):111-4. PubMed ID: 9303066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.