BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 7587274)

  • 1. Mechanical ventilators optimized for pediatric use decrease work of breathing and oxygen consumption during pressure-support ventilation.
    Heulitt MJ; Torres A; Carmack J; Anders M
    Crit Care Med; 1995 Nov; 23(11):1931-3. PubMed ID: 7587274
    [No Abstract]   [Full Text] [Related]  

  • 2. Mechanical ventilators optimized for pediatric use decrease work of breathing and oxygen consumption during pressure-support ventilation.
    el-Khatib MF; Chatburn RL; Potts DL; Blumer JL; Smith PG
    Crit Care Med; 1994 Dec; 22(12):1942-8. PubMed ID: 7988130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bi-level positive airway pressure ventilation reduces the oxygen cost of breathing in long-standing post-polio patients on invasive home mechanical ventilation.
    Barle H; Söderberg P; Haegerstrand C; Markström A
    Acta Anaesthesiol Scand; 2005 Feb; 49(2):197-202. PubMed ID: 15715621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen cost of breathing and diaphragmatic pressure-time index. Measurement in patients with COPD during weaning with pressure support ventilation.
    Annat GJ; Viale JP; Dereymez CP; Bouffard YM; Delafosse BX; Motin JP
    Chest; 1990 Aug; 98(2):411-4. PubMed ID: 2198141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of total resistive work of breathing in two generations of ventilators in an animal model.
    Heulitt MJ; Torres A; Anders M; Wilson SW; Carmack J
    Pediatr Pulmonol; 1996 Jul; 22(1):58-66. PubMed ID: 8856804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of oxygen cost of breathing between pressure-support ventilation and airway pressure release ventilation.
    Uyar M; Demirag K; Olgun E; Cankayali I; Moral AR
    Anaesth Intensive Care; 2005 Apr; 33(2):218-22. PubMed ID: 15960404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of the oxygen cost of breathing as an index of weaning ability from mechanical ventilation.
    McDonald NJ; Lavelle P; Gallacher WN; Harpin RP
    Intensive Care Med; 1988; 14(1):50-4. PubMed ID: 3343430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo physiologic comparison of two ventilators used for domiciliary ventilation in children with cystic fibrosis.
    Fauroux B; Pigeot J; Polkey MI; Isabey D; Clément A; Lofaso F
    Crit Care Med; 2001 Nov; 29(11):2097-105. PubMed ID: 11700403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autonomous control of ventilation.
    Johannigman JA; Muskat P; Barnes S; Davis K; Branson RD
    J Trauma; 2008 Apr; 64(4 Suppl):S302-20. PubMed ID: 18385583
    [No Abstract]   [Full Text] [Related]  

  • 10. Mechanical ventilation mode (volume × pressure) does not change the variables obtained by indirect calorimetry in critically ill patients.
    Clapis FC; Auxiliadora-Martins M; Japur CC; Martins-Filho OA; Evora PR; Basile-Filho A
    J Crit Care; 2010 Dec; 25(4):659.e9-16. PubMed ID: 20080021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of mechanical ventilation on oxygen consumption in critically ill patients.
    Manthous CA; Hall JB; Kushner R; Schmidt GA; Russo G; Wood LD
    Am J Respir Crit Care Med; 1995 Jan; 151(1):210-4. PubMed ID: 7812556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of heat and moisture exchangers on minute ventilation, ventilatory drive, and work of breathing during pressure-support ventilation in acute respiratory failure.
    Pelosi P; Solca M; Ravagnan I; Tubiolo D; Ferrario L; Gattinoni L
    Crit Care Med; 1996 Jul; 24(7):1184-8. PubMed ID: 8674333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proportional pressure support and automatic tube compensation: new options for assisted spontaneous breathing.
    Kuhlen R; Guttmann J; Nibbe L; Max M; Reyle-Hahn S; Rossaint R; Falke K
    Acta Anaesthesiol Scand Suppl; 1997; 111():155-9. PubMed ID: 9420994
    [No Abstract]   [Full Text] [Related]  

  • 14. Editor's note regarding duplicated text.
    Anaesth Intensive Care; 2013 Sep; 41(5):677. PubMed ID: 24020081
    [No Abstract]   [Full Text] [Related]  

  • 15. Pressure- and work-limited neuroadaptive control for mechanical ventilation of critical care patients.
    Volyanskyy KY; Haddad WM; Bailey JM
    IEEE Trans Neural Netw; 2011 Apr; 22(4):614-26. PubMed ID: 21411402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Basic concepts in mechanical ventilation.
    Carbery C
    J Perioper Pract; 2008 Mar; 18(3):106-14. PubMed ID: 18426129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pressure support ventilation: what is the clinical significance?
    Cheney FW
    Anesth Analg; 1993 Mar; 76(3):669-70. PubMed ID: 8452293
    [No Abstract]   [Full Text] [Related]  

  • 18. Oxygen cost of breathing. Changes dependent upon mode of mechanical ventilation.
    Kanak R; Fahey PJ; Vanderwarf C
    Chest; 1985 Jan; 87(1):126-7. PubMed ID: 3880691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic tube compensation in patients after cardiac surgery: effects on oxygen consumption and breathing pattern.
    Oczenski W; Kepka A; Krenn H; Fitzgerald RD; Schwarz S; Hörmann C
    Crit Care Med; 2002 Jul; 30(7):1467-71. PubMed ID: 12130963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pressure support ventilation decreases inspiratory work of breathing during general anesthesia and spontaneous ventilation.
    Christie JM; Smith RA
    Anesth Analg; 1992 Aug; 75(2):167-71. PubMed ID: 1632530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.