BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 7587424)

  • 1. Contribution of the respiratory muscles to the lactic acidosis of heavy exercise in COPD.
    Engelen MP; Casaburi R; Rucker R; Carithers E
    Chest; 1995 Nov; 108(5):1246-51. PubMed ID: 7587424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ventilatory and metabolic changes as a result of exercise training in COPD patients.
    Patessio A; Carone M; Ioli F; Donner CF
    Chest; 1992 May; 101(5 Suppl):274S-278S. PubMed ID: 1576849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reductions in exercise lactic acidosis and ventilation as a result of exercise training in patients with obstructive lung disease.
    Casaburi R; Patessio A; Ioli F; Zanaboni S; Donner CF; Wasserman K
    Am Rev Respir Dis; 1991 Jan; 143(1):9-18. PubMed ID: 1986689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lactic acid levels in patients with chronic obstructive pulmonary disease accomplishing unsupported arm exercises.
    de Souza GF; Castro AA; Velloso M; Silva CR; Jardim JR
    Chron Respir Dis; 2010; 7(2):75-82. PubMed ID: 20348268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of gas exchange, lactate, and lactic acidosis thresholds in patients with chronic obstructive pulmonary disease.
    Patessio A; Casaburi R; Carone M; Appendini L; Donner CF; Wasserman K
    Am Rev Respir Dis; 1993 Sep; 148(3):622-6. PubMed ID: 8368633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of acute bicarbonate administration on exercise responses of COPD patients.
    Coppoolse R; Barstow TJ; Stringer WW; Carithers E; Casaburi R
    Med Sci Sports Exerc; 1997 Jun; 29(6):725-32. PubMed ID: 9219199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selection criteria for exercise training in patients with COPD.
    Patessio A; Donner CF
    Z Kardiol; 1994; 83 Suppl 3():155-8. PubMed ID: 7941664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved breathing capacity during exercise in severe obstructive airway disease.
    Natif N; Shiner RJ; Gaides M; Ben-Dov I
    Respir Physiol; 1998 May; 112(2):145-54. PubMed ID: 9716298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sinusoidal high-intensity exercise does not elicit ventilatory limitation in chronic obstructive pulmonary disease.
    Porszasz J; Rambod M; van der Vaart H; Rossiter HB; Ma S; Kiledjian R; Casaburi R
    Exp Physiol; 2013 Jun; 98(6):1102-14. PubMed ID: 23335005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ventilatory response and arterial potassium concentration during incremental exercise in patients with chronic airways obstruction.
    Yoshida T; Chida M; Ichioka M; Makiguchi K; Tojo N; Udo M
    Clin Physiol; 1991 Jan; 11(1):73-82. PubMed ID: 2019080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic and hemodynamic responses of lower limb during exercise in patients with COPD.
    Maltais F; Jobin J; Sullivan MJ; Bernard S; Whittom F; Killian KJ; Desmeules M; Bélanger M; LeBlanc P
    J Appl Physiol (1985); 1998 May; 84(5):1573-80. PubMed ID: 9572801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Blood lactate changes during incremental exercise in chronic obstructive pulmonary disease].
    Huang WL; King SL; Wang KL; Chiang CD
    Zhonghua Yi Xue Za Zhi (Taipei); 1992 Dec; 50(6):463-8. PubMed ID: 1338022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Greater exercise tolerance in COPD during acute interval, compared to equivalent constant-load, cycle exercise: physiological mechanisms.
    Louvaris Z; Chynkiamis N; Spetsioti S; Asimakos A; Zakynthinos S; Wagner PD; Vogiatzis I
    J Physiol; 2020 Sep; 598(17):3613-3629. PubMed ID: 32472698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Target-flow inspiratory muscle training: breathing patterns and metabolic costs.
    Dekhuijzen PN; Hopman MT; Binkhorst RA; Folgering HT
    Int J Rehabil Res; 1991; 14(4):293-301. PubMed ID: 1783476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of reduced body weight on muscle aerobic capacity in patients with COPD.
    Palange P; Forte S; Onorati P; Paravati V; Manfredi F; Serra P; Carlone S
    Chest; 1998 Jul; 114(1):12-8. PubMed ID: 9674441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of positive expiratory pressure breathing during exercise in patients with COPD.
    van der Schans CP; de Jong W; de Vries G; Kaan WA; Postma DS; Koëter GH; van der Mark TW
    Chest; 1994 Mar; 105(3):782-9. PubMed ID: 8131541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic acidosis during exercise in patients with chronic obstructive pulmonary disease. Use of the V-slope method for anaerobic threshold determination.
    Sue DY; Wasserman K; Moricca RB; Casaburi R
    Chest; 1988 Nov; 94(5):931-8. PubMed ID: 3180897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of peak oxygen consumption during cycle and treadmill exercise in severe chronic obstructive pulmonary disease.
    Mathur RS; Revill SM; Vara DD; Walton R; Morgan MD
    Thorax; 1995 Aug; 50(8):829-33. PubMed ID: 7570432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lactate kinetics in severe COPD. Implications of an abnormal aminopyrine breath test.
    Goodnight-White SJ; Miller CC; Haber SE; Klein PD; Fletcher EC
    Chest; 1992 May; 101(5 Suppl):268S-273S. PubMed ID: 1576848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differences in physiological response to exercise in patients with different COPD severity.
    Maekura R; Hiraga T; Miki K; Kitada S; Yoshimura K; Miki M; Tateishi Y
    Respir Care; 2014 Feb; 59(2):252-62. PubMed ID: 23821762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.