These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 7588520)

  • 1. Effect of pH and ionic strength of running buffer on peptide behavior in capillary electrophoresis: theoretical calculation and experimental evaluation.
    Cifuentes A; Poppe H
    Electrophoresis; 1995 Apr; 16(4):516-24. PubMed ID: 7588520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation and optimization of peptide separation by capillary electrophoresis.
    Cifuentes A; Poppe H
    J Chromatogr A; 1994 Sep; 680(1):321-40. PubMed ID: 7952009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The electrophoretic mobility of tripeptides as a function of pH and ionic strength: comparison with iontophoretic flux data.
    VanOrman Huff B; Liversidge GG; McIntire GL
    Pharm Res; 1995 May; 12(5):751-5. PubMed ID: 7479563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation of electrophoretic mobilities from capillary electrophoresis with physicochemical properties of proteins and peptides.
    Rickard EC; Strohl MM; Nielsen RG
    Anal Biochem; 1991 Aug; 197(1):197-207. PubMed ID: 1952066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation and optimization of peptide separation by capillary electrophoresis-mass spectrometry.
    Simó C; Soto-Yarritu PL; Cifuentes A
    Electrophoresis; 2002 Jul; 23(14):2288-95. PubMed ID: 12210235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of ignored and well-known zone distortions on the separation performance of proteins in capillary free zone electrophoresis with special reference to analysis in polyacrylamide-coated fused silica capillaries in various buffers. I. Theoretical studies.
    Hjertén S; Mohabbati S; Westerlund D
    J Chromatogr A; 2004 Oct; 1053(1-2):181-99. PubMed ID: 15543984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peptide analysis by capillary (zone) electrophoresis.
    Messana I; Rossetti DV; Cassiano L; Misiti F; Giardina B; Castagnola M
    J Chromatogr B Biomed Sci Appl; 1997 Oct; 699(1-2):149-71. PubMed ID: 9392374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrophoretic behavior of peptides in capillary electrophoresis influence of ionic strength and pH in aqueous-organic media.
    Sanz-Nebot V; Benavente F; Toro I; Barbosa J
    J Chromatogr A; 2001 Jun; 921(1):69-79. PubMed ID: 11461015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-consistent framework for standardising mobilities in free solution capillary electrophoresis: applications to oligoglycines and oligoalanines.
    Survay MA; Goodall DM; Wren SA; Rowe RC
    J Chromatogr A; 1996 Aug; 741(1):99-113. PubMed ID: 8785001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Empirical predictor of conditions that support ideal-filter capillary electrophoresis.
    Wang TY; Hu L; Krylov SN
    Electrophoresis; 2020 Jul; 41(13-14):1225-1229. PubMed ID: 32310305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peptide mapping by capillary zone electrophoresis: how close is theoretical simulation to experimental determination.
    Janini GM; Metral CJ; Issaq HJ
    J Chromatogr A; 2001 Jul; 924(1-2):291-306. PubMed ID: 11521876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separation of peptides by capillary electrophoresis.
    Scriba GK; Psurek A
    Methods Mol Biol; 2008; 384():483-506. PubMed ID: 18392581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of phytic acid as a buffer additive for the separation of proteins in capillary electrophoresis.
    Veraart JR; Schouten Y; Gooijer C; Lingeman H
    J Chromatogr A; 1997 Apr; 768(2):307-13. PubMed ID: 9175279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theory and computer programs for calculating solution pH, buffer formula, and buffer capacity for multiple component system at a given ionic strength and temperature.
    Okamoto H; Mori K; Ohtsuka K; Ohuchi H; Ishii H
    Pharm Res; 1997 Mar; 14(3):299-302. PubMed ID: 9098870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of electrophoretic mobilities and hydrodynamic radii of three humic substances as a function of pH and ionic strength.
    Hosse M; Wilkinson KJ
    Environ Sci Technol; 2001 Nov; 35(21):4301-6. PubMed ID: 11718346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of acidity constants, ionic mobilities and charges of antimicrobial peptides by capillary electrophoresis.
    Tůmová T; Monincová L; Čeřovský V; Kašička V
    Electrophoresis; 2016 Dec; 37(23-24):3186-3195. PubMed ID: 27757974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlation of electrophoretic mobilities of proteins and peptides with their physicochemical properties.
    Basak SK; Ladisch MR
    Anal Biochem; 1995 Mar; 226(1):51-8. PubMed ID: 7785779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulated quantitative and qualitative isotachophoretic indices of 73 amino acids and peptides in the pH range 6.4-10.
    Hirokawa T; Kiso Y; Gas B; Zusková I; Vacík J
    J Chromatogr; 1993 Jan; 628(2):283-308. PubMed ID: 8425923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capillary electrophoresis of proteins and peptides.
    Burgi D; Smith AJ
    Curr Protoc Mol Biol; 2001 May; Chapter 10():Unit 10.20. PubMed ID: 18265061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling migration behavior of peptide hormones in capillary electrophoresis-electrospray mass spectrometry.
    Benavente F; Balaguer E; Barbosa J; Sanz-Nebot V
    J Chromatogr A; 2006 Jun; 1117(1):94-102. PubMed ID: 16616758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.