These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 7588676)

  • 1. The mechanical effects of contractions on blood flow to the muscle.
    Naamani R; Hussain SN; Magder S
    Eur J Appl Physiol Occup Physiol; 1995; 71(2-3):102-12. PubMed ID: 7588676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differences between VO2 maxima of twitch and tetanic contractions are related to blood flow.
    Brechue WF; Barclay JK; O'Drobinak DM; Stainsby WN
    J Appl Physiol (1985); 1991 Jul; 71(1):131-5. PubMed ID: 1917734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of rhythmic tetanic skeletal muscle contractions on peak muscle perfusion.
    Dobson JL; Gladden LB
    J Appl Physiol (1985); 2003 Jan; 94(1):11-9. PubMed ID: 12391133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Faster adjustment of O2 delivery does not affect V(O2) on-kinetics in isolated in situ canine muscle.
    Grassi B; Gladden LB; Samaja M; Stary CM; Hogan MC
    J Appl Physiol (1985); 1998 Oct; 85(4):1394-403. PubMed ID: 9760333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pressure-flow relations of diaphragm and vital organs with nitroprusside-induced vasodilatation.
    Magder S
    J Appl Physiol (1985); 1986 Aug; 61(2):409-16. PubMed ID: 3745034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blood flow and pressure relationships which determine VO2max.
    Brechue WF; Ameredes BT; Barclay JK; Stainsby WN
    Med Sci Sports Exerc; 1995 Jan; 27(1):37-42. PubMed ID: 7898335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blood flow response to electrically induced twitch and tetanic lower-limb muscle contractions.
    Janssen TW; Hopman MT
    Arch Phys Med Rehabil; 2003 Jul; 84(7):982-7. PubMed ID: 12881821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endothelial modulation of skeletal muscle blood flow and VO(2) during low- and high-intensity contractions.
    King-VanVlack CE; Mewburn JD; Chapler CK; MacDonald PH
    J Appl Physiol (1985); 2002 Feb; 92(2):461-8. PubMed ID: 11796652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vasodilatation is obligatory for contraction-induced hyperaemia in canine skeletal muscle.
    Hamann JJ; Buckwalter JB; Clifford PS
    J Physiol; 2004 Jun; 557(Pt 3):1013-20. PubMed ID: 15073277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of nitric oxide on vascular resistance and muscle mechanics during tetanic contractions in situ.
    Ameredes BT; Provenzano MA
    J Appl Physiol (1985); 1999 Jul; 87(1):142-51. PubMed ID: 10409568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of nitric oxide and endothelin on skeletal muscle contractility changes when stimulation is altered.
    Murrant CL; Frisbee JC; Barclay JK
    Can J Physiol Pharmacol; 1997 May; 75(5):414-22. PubMed ID: 9250375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of stimulation parameters on the release of adenosine, lactate and CO2 from contracting dog gracilis muscle.
    Achike FI; Ballard HJ
    J Physiol; 1993 Apr; 463():107-21. PubMed ID: 8246177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microvascular hematocrit and permeability-surface area product in contracting canine skeletal muscle in situ.
    Frisbee JC; Barclay JK
    Microvasc Res; 1998 Mar; 55(2):153-64. PubMed ID: 9521890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of pleural pressure and abdominal pressure on diaphragmatic blood flow.
    Buchler B; Magder S; Katsardis H; Jammes Y; Roussos C
    J Appl Physiol (1985); 1985 Mar; 58(3):691-7. PubMed ID: 3980376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscle blood flow response to contraction: influence of venous pressure.
    Valic Z; Buckwalter JB; Clifford PS
    J Appl Physiol (1985); 2005 Jan; 98(1):72-6. PubMed ID: 15377645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Appearance of adenosine in venous blood from the contracting gracilis muscle and its role in vasodilatation in the dog.
    Ballard HJ; Cotterrell D; Karim F
    J Physiol; 1987 Jun; 387():401-13. PubMed ID: 3656179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of contraction frequency on the contractile and noncontractile phases of muscle venous blood flow.
    Hogan MC; Grassi B; Samaja M; Stary CM; Gladden LB
    J Appl Physiol (1985); 2003 Sep; 95(3):1139-44. PubMed ID: 12794032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Venous mechanics of contracting gastrocnemius muscle and the muscle pump theory.
    Magder S
    J Appl Physiol (1985); 1995 Dec; 79(6):1930-5. PubMed ID: 8847255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peripheral O2 diffusion does not affect V(O2)on-kinetics in isolated insitu canine muscle.
    Grassi B; Gladden LB; Stary CM; Wagner PD; Hogan MC
    J Appl Physiol (1985); 1998 Oct; 85(4):1404-12. PubMed ID: 9760334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Venous adenosine content and vascular responses in dog hind-limb skeletal muscles during twitch contraction.
    Ballard HJ; Cotterrell D; Karim F
    Q J Exp Physiol; 1987 Oct; 72(4):461-71. PubMed ID: 3423195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.