These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 7588811)

  • 21. Purification and characterization of a neutral processing mannosidase from calf liver acting on (Man)9(GlcNAc)2 oligosaccharides.
    Schweden J; Legler G; Bause E
    Eur J Biochem; 1986 Jun; 157(3):563-70. PubMed ID: 2941301
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glycoprotein biosynthesis in yeast: purification and characterization of the endoplasmic reticulum Man9 processing alpha-mannosidase.
    Ziegler FD; Trimble RB
    Glycobiology; 1991 Dec; 1(6):605-14. PubMed ID: 1822240
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Overexpression of the Golgi-localized enzyme alpha-mannosidase IIx in Chinese hamster ovary cells results in the conversion of hexamannosyl-N-acetylchitobiose to tetramannosyl-N-acetylchitobiose in the N-glycan-processing pathway.
    Oh-Eda M; Nakagawa H; Akama TO; Lowitz K; Misago M; Moremen KW; Fukuda MN
    Eur J Biochem; 2001 Mar; 268(5):1280-8. PubMed ID: 11231279
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Subcellular distribution in rat liver of a novel broad-specificity (alpha 1----2, alpha 1----3 and alpha 1----6) mannosidase active on oligomannose glycans.
    Bonay P; Roth J; Hughes RC
    Eur J Biochem; 1992 Apr; 205(1):399-407. PubMed ID: 1555600
    [TBL] [Abstract][Full Text] [Related]  

  • 25. (Arg)3 within the N-terminal domain of glucosidase I contains ER targeting information but is not required absolutely for ER localization.
    Hardt B; Kalz-Fuller B; Aparicio R; Volker C; Bause E
    Glycobiology; 2003 Mar; 13(3):159-68. PubMed ID: 12626409
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kifunensine, a potent inhibitor of the glycoprotein processing mannosidase I.
    Elbein AD; Tropea JE; Mitchell M; Kaushal GP
    J Biol Chem; 1990 Sep; 265(26):15599-605. PubMed ID: 2144287
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Marked differences in the swainsonine inhibition of rat liver lysosomal alpha-D-mannosidase, rat liver Golgi mannosidase II, and jack bean alpha-D-mannosidase.
    Tulsiani DR; Broquist HP; Touster O
    Arch Biochem Biophys; 1985 Jan; 236(1):427-34. PubMed ID: 3917650
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biosynthesis and modification of Golgi mannosidase II in HeLa and 3T3 cells.
    Moremen KW; Touster O
    J Biol Chem; 1985 Jun; 260(11):6654-62. PubMed ID: 3922977
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Substrate specificity of rat liver cytosolic alpha-D-mannosidase. Novel degradative pathway for oligomannosidic type glycans.
    Haeuw JF; Strecker G; Wieruszeski JM; Montreuil J; Michalski JC
    Eur J Biochem; 1991 Dec; 202(3):1257-68. PubMed ID: 1837268
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Swainsonine, a potent mannosidase inhibitor, elevates rat liver and brain lysosomal alpha-D-mannosidase, decreases Golgi alpha-D-mannosidase II, and increases the plasma levels of several acid hydrolases.
    Tulsiani DR; Touster O
    Arch Biochem Biophys; 1983 Jul; 224(2):594-600. PubMed ID: 6408990
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Substrate specificities of recombinant murine Golgi alpha1, 2-mannosidases IA and IB and comparison with endoplasmic reticulum and Golgi processing alpha1,2-mannosidases.
    Lal A; Pang P; Kalelkar S; Romero PA; Herscovics A; Moremen KW
    Glycobiology; 1998 Oct; 8(10):981-95. PubMed ID: 9719679
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Immunocytochemical localization of alpha-D-mannosidase II in the Golgi apparatus of rat liver.
    Novikoff PM; Tulsiani DR; Touster O; Yam A; Novikoff AB
    Proc Natl Acad Sci U S A; 1983 Jul; 80(14):4364-8. PubMed ID: 6576342
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mammalian alpha-mannosidases--multiple forms but a common purpose?
    Daniel PF; Winchester B; Warren CD
    Glycobiology; 1994 Oct; 4(5):551-66. PubMed ID: 7881169
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Isolation and characterization of a class II alpha-mannosidase cDNA from lepidopteran insect cells.
    Jarvis DL; Bohlmeyer DA; Liao YF; Lomax KK; Merkle RK; Weinkauf C; Moremen KW
    Glycobiology; 1997 Feb; 7(1):113-27. PubMed ID: 9061370
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Purification, crystallization and preliminary X-ray crystallographic analysis of recombinant murine Golgi mannosidase IA, a class I alpha-mannosidase involved in Asn-linked oligosaccharide maturation.
    Vallée F; Lal A; Moremen KW; Howell PL
    Acta Crystallogr D Biol Crystallogr; 1999 Feb; 55(Pt 2):571-3. PubMed ID: 10089383
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Processing of MOPC 315 immunoglobulin A oligosaccharides: evidence for endoplasmic reticulum and trans Golgi alpha 1,2-mannosidase activity.
    Hickman S; Theodorakis JL; Greco JM; Brown PH
    J Cell Biol; 1984 Feb; 98(2):407-16. PubMed ID: 6420419
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of a novel mouse recombinant processing alpha-mannosidase.
    Schneikert J; Herscovics A
    Glycobiology; 1994 Aug; 4(4):445-50. PubMed ID: 7827406
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Swainsonine is a useful tool to monitor the intracellular traffic of N-linked glycoproteins as a function of the state of enterocytic differentiation of HT-29 cells.
    Houri JJ; Ogier-Denis E; Bauvy C; Aubery M; Sapin C; Trugnan G; Codogno P
    Eur J Biochem; 1992 May; 205(3):1169-74. PubMed ID: 1577000
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The structural basis of the inhibition of human alpha-mannosidases by azafuranose analogues of mannose.
    Winchester B; al Daher S; Carpenter NC; Cenci di Bello I; Choi SS; Fairbanks AJ; Fleet GW
    Biochem J; 1993 Mar; 290 ( Pt 3)(Pt 3):743-9. PubMed ID: 8457203
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The N-glycan processing in HT-29 cells is a function of their state of enterocytic differentiation. Evidence for an atypical traffic associated with change in polypeptide stability in undifferentiated HT-29 cells.
    Trugnan G; Ogier-Denis E; Sapin C; Darmoul D; Bauvy C; Aubery M; Codogno P
    J Biol Chem; 1991 Nov; 266(31):20849-55. PubMed ID: 1834650
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.