These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 7588992)

  • 1. The identification and characterisation of chloramphenicol-aldehyde, a new human metabolite of chloramphenicol.
    Holt DE
    Eur J Drug Metab Pharmacokinet; 1995; 20(1):35-42. PubMed ID: 7588992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of chloramphenicol oxamic acid as a new major metabolite of chloramphenicol in rats.
    Wal JM; Peleran JC; Bories GF
    FEBS Lett; 1980 Sep; 119(1):38-42. PubMed ID: 7428925
    [No Abstract]   [Full Text] [Related]  

  • 3. Investigation of the mechanism of the metabolic activation of chloramphenicol by rat liver microsomes. Identification of a new metabolite.
    Pohl LR; Nelson SD; Krishna G
    Biochem Pharmacol; 1978 Feb; 27(4):491-6. PubMed ID: 343786
    [No Abstract]   [Full Text] [Related]  

  • 4. Chloramphenicol oxamylethanolamine as an end product of chloramphenicol metabolism in rat and humans: evidence for the formation of a phospholipid adduct.
    Cravedi JP; Perdu-Durand E; Baradat M; Alary J; Debrauwer L; Bories G
    Chem Res Toxicol; 1995; 8(5):642-8. PubMed ID: 7548746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A reappraisal of chloramphenicol metabolism: detection and quantification of metabolites in the sera of children.
    Holt DE; Hurley R; Harvey D
    J Antimicrob Chemother; 1995 Jan; 35(1):115-27. PubMed ID: 7768759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new pathway for the oxidative metabolism of chloramphenicol by rat liver microsomes.
    Morris PL; Burke TR; George JW; Pohl LR
    Drug Metab Dispos; 1982; 10(5):439-45. PubMed ID: 6128189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of glutathione-dependent dechlorination of chloramphenicol and thiamphenicol by cytosol of rat liver.
    Martin JL; Gross BJ; Morris P; Pohl LR
    Drug Metab Dispos; 1980; 8(6):371-5. PubMed ID: 6109602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-pressure liquid chromatographic assay for chloramphenicol, chloramphenicol-3-monosuccinate, and chloramphenicol-1-monosuccinate.
    Burke JT; Wargin WA; Blum MR
    J Pharm Sci; 1980 Aug; 69(8):909-12. PubMed ID: 7400935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-performance liquid chromatographic determination of chloramphenicol and four analogues using reductive and oxidative electrochemical and ultraviolet detection.
    Abou-Khalil S; Abou-Khalil WH; Masoud AN; Yunis AA
    J Chromatogr; 1987 Jun; 417(1):111-9. PubMed ID: 3624389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioavailability and clearance of chloramphenicol after intravenous chloramphenicol succinate.
    Nahata MC; Powell DA
    Clin Pharmacol Ther; 1981 Sep; 30(3):368-72. PubMed ID: 7273601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformation and quantification of chloramphenicol in cow's urine, muscle and eggs by electron capture negative ion chemical ionization gas chromatography/mass spectrometry.
    van der Heeft E; de Jong AP; van Ginkel LA; van Rossum HJ; Zomer G
    Biol Mass Spectrom; 1991 Dec; 20(12):763-70. PubMed ID: 1812985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chloramphenicol succinate, a competitive substrate and inhibitor of succinate dehydrogenase: possible reason for its toxicity.
    Ambekar CS; Lee JS; Cheung BM; Chan LC; Liang R; Kumana CR
    Toxicol In Vitro; 2004 Aug; 18(4):441-7. PubMed ID: 15130601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of chloramphenicol-glucuronide in urine by high-performance liquid chromatography.
    Aravind MK; Miceli JN; Done AK; Kauffman RE
    J Chromatogr; 1982 Nov; 232(2):461-4. PubMed ID: 7153297
    [No Abstract]   [Full Text] [Related]  

  • 14. Simultaneous measurement of chloramphenicol sodium succinate and chloramphenicol in presence of furosemide in plasma and urine.
    Nahata MC
    J Clin Pharm Ther; 1993 Aug; 18(4):301. PubMed ID: 8227239
    [No Abstract]   [Full Text] [Related]  

  • 15. Reductive dechlorination of chloramphenicol by rat liver microsomes.
    Morris PL; Burke TR; Phol LR
    Drug Metab Dispos; 1983; 11(2):126-30. PubMed ID: 6133716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous measurement of chloramphenicol and chloramphenicol succinate by high-performance liquid chromatography.
    Aravind MK; Miceli JN; Kauffman RE; Strebel LE; Done AK
    J Chromatogr; 1980 Nov; 221(1):176-81. PubMed ID: 7451621
    [No Abstract]   [Full Text] [Related]  

  • 17. Synthesis and antibiotic properties of chloramphenicol reduction products.
    Corbett MD; Chipko BR
    Antimicrob Agents Chemother; 1978 Feb; 13(2):193-8. PubMed ID: 646341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of the mechanism of metabolic activation of chloramphenicol by rat liver microsomes.
    Pohl LR; Krishna G
    Biochem Pharmacol; 1978 Feb; 27(3):335-41. PubMed ID: 619915
    [No Abstract]   [Full Text] [Related]  

  • 19. Clinical pharmacokinetics of chloramphenicol and chloramphenicol succinate.
    Ambrose PJ
    Clin Pharmacokinet; 1984; 9(3):222-38. PubMed ID: 6375931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of high-pressure liquid chromatography in the preparation of tritium-labeled chloramphenicol and its analogs.
    Martin JL; Taburet AM; Pohl LR
    Anal Biochem; 1979 Jul; 96(1):215-9. PubMed ID: 495985
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.