BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 7589324)

  • 1. Transplants enhance locomotion in neonatal kittens whose spinal cords are transected: a behavioral and anatomical study.
    Howland DR; Bregman BS; Tessler A; Goldberger ME
    Exp Neurol; 1995 Oct; 135(2):123-45. PubMed ID: 7589324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of locomotor behavior in the spinal kitten.
    Howland DR; Bregman BS; Tessler A; Goldberger ME
    Exp Neurol; 1995 Oct; 135(2):108-22. PubMed ID: 7589323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The development of quadrupedal locomotion in the kitten.
    Howland DR; Bregman BS; Goldberger ME
    Exp Neurol; 1995 Oct; 135(2):93-107. PubMed ID: 7589328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neurotrophic factors promote and enhance locomotor recovery in untrained spinalized cats.
    Boyce VS; Tumolo M; Fischer I; Murray M; Lemay MA
    J Neurophysiol; 2007 Oct; 98(4):1988-96. PubMed ID: 17652412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of behavioral methods to predict spinal cord plasticity.
    Goldberger ME
    Restor Neurol Neurosci; 1991 Jan; 2(4):339-50. PubMed ID: 21551620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transplants and neurotrophic factors increase regeneration and recovery of function after spinal cord injury.
    Bregman BS; Coumans JV; Dai HN; Kuhn PL; Lynskey J; McAtee M; Sandhu F
    Prog Brain Res; 2002; 137():257-73. PubMed ID: 12440372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anatomical and functional recovery following spinal cord transection in the chick embryo.
    Shimizu I; Oppenheim RW; O'Brien M; Shneiderman A
    J Neurobiol; 1990 Sep; 21(6):918-37. PubMed ID: 2077104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The chronic spinalized cat: a model for neuromuscular plasticity.
    Smith JL; Edgerton VR; Eldred E; Zernicke RF
    Birth Defects Orig Artic Ser; 1983; 19(4):357-73. PubMed ID: 6871404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential of adult mammalian lumbosacral spinal cord to execute and acquire improved locomotion in the absence of supraspinal input.
    Edgerton VR; Roy RR; Hodgson JA; Prober RJ; de Guzman CP; de Leon R
    J Neurotrauma; 1992 Mar; 9 Suppl 1():S119-28. PubMed ID: 1588602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Can the mammalian lumbar spinal cord learn a motor task?
    Hodgson JA; Roy RR; de Leon R; Dobkin B; Edgerton VR
    Med Sci Sports Exerc; 1994 Dec; 26(12):1491-7. PubMed ID: 7869884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Studies on interlimb coordination of the cat during locomotion].
    Hirayama H
    Hokkaido Igaku Zasshi; 1985 Sep; 60(5):699-712. PubMed ID: 4077017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intraspinal transplantation of embryonic spinal cord tissue in neonatal and adult rats.
    Reier PJ; Bregman BS; Wujek JR
    J Comp Neurol; 1986 May; 247(3):275-96. PubMed ID: 3522658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Embryonic spinal cord transplants enhance locomotor performance in spinalized newborn rats.
    Tessler A; Fischer I; Giszter S; Himes BT; Miya D; Mori F; Murray M
    Adv Neurol; 1997; 72():291-303. PubMed ID: 8993706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of postural muscle tone to full expression of posture and locomotor movements: multi-faceted analyses of its setting brainstem-spinal cord mechanisms in the cat.
    Mori S
    Jpn J Physiol; 1989; 39(6):785-809. PubMed ID: 2698966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneous recovery of locomotion induced by remaining fibers after spinal cord transection in adult rats.
    You SW; Chen BY; Liu HL; Lang B; Xia JL; Jiao XY; Ju G
    Restor Neurol Neurosci; 2003; 21(1-2):39-45. PubMed ID: 12808201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The locomotion of the low spinal cat. I. Coordination within a hindlimb.
    Forssberg H; Grillner S; Halbertsma J
    Acta Physiol Scand; 1980 Mar; 108(3):269-81. PubMed ID: 7376922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fetal transplants alter the development of function after spinal cord transection in newborn rats.
    Miya D; Giszter S; Mori F; Adipudi V; Tessler A; Murray M
    J Neurosci; 1997 Jun; 17(12):4856-72. PubMed ID: 9169544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adult opossums (Didelphis virginiana) demonstrate near normal locomotion after spinal cord transection as neonates.
    Wang XM; Basso DM; Terman JR; Bresnahan JC; Martin GF
    Exp Neurol; 1998 May; 151(1):50-69. PubMed ID: 9582254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dorsolateral cervical spinal injury differentially affects forelimb and hindlimb action in rats.
    Muir GD; Webb AA; Kanagal S; Taylor L
    Eur J Neurosci; 2007 Mar; 25(5):1501-10. PubMed ID: 17425576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electromyographic activity patterns of ankle flexor and extensor muscles during spontaneous and L-DOPA-induced locomotion in freely moving neonatal rats.
    Navarrete R; Slawińska U; Vrbová G
    Exp Neurol; 2002 Feb; 173(2):256-65. PubMed ID: 11822889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.