These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 7589474)
1. Cardiolipin modulates the secondary structure of the presequence peptide of cytochrome oxidase subunit IV: a 2D 1H-NMR study. Chupin V; Leenhouts JM; de Kroon AI; de Kruijff B FEBS Lett; 1995 Oct; 373(3):239-44. PubMed ID: 7589474 [TBL] [Abstract][Full Text] [Related]
2. N-terminal half of a mitochondrial presequence peptide takes a helical conformation when bound to dodecylphosphocholine micelles: a proton nuclear magnetic resonance study. Endo T; Shimada I; Roise D; Inagaki F J Biochem; 1989 Sep; 106(3):396-400. PubMed ID: 2558107 [TBL] [Abstract][Full Text] [Related]
3. Secondary structure and topology of a mitochondrial presequence peptide associated with negatively charged micelles. A 2D H-NMR study. Chupin V; Leenhouts JM; de Kroon AI; de Kruijff B Biochemistry; 1996 Mar; 35(10):3141-6. PubMed ID: 8605147 [TBL] [Abstract][Full Text] [Related]
4. A molecular model for the specific cardiolipin-presequence interactions. Leenhouts JM; Török Z; Chupin V; de Kruijff B Biochem Soc Trans; 1995 Nov; 23(4):968-71. PubMed ID: 8654876 [No Abstract] [Full Text] [Related]
5. Secondary structure of a mitochondrial signal peptide in lipid bilayer membranes. Tamm LK; Bartoldus I FEBS Lett; 1990 Oct; 272(1-2):29-33. PubMed ID: 2172017 [TBL] [Abstract][Full Text] [Related]
6. PhoE signal peptide inserts into micelles as a dynamic helix-break-helix structure, which is modulated by the environment. A two-dimensional 1H NMR study. Chupin V; Killian JA; Breg J; de Jongh HH; Boelens R; Kaptein R; de Kruijff B Biochemistry; 1995 Sep; 34(36):11617-24. PubMed ID: 7547893 [TBL] [Abstract][Full Text] [Related]
7. Structural study of the interaction between the mitochondrial presequence of cytochrome c oxidase subunit IV and model membranes. Colotto A; Martin I; Ruysschaert JM; Sen A; Epand RM Biosci Rep; 1998 Oct; 18(5):251-63. PubMed ID: 10192282 [TBL] [Abstract][Full Text] [Related]
8. The effect of a membrane potential on the interaction of mastoparan X, a mitochondrial presequence, and several regulatory peptides with phospholipid vesicles. de Kroon AI; de Gier J; de Kruijff B Biochim Biophys Acta; 1991 Sep; 1068(2):111-24. PubMed ID: 1680397 [TBL] [Abstract][Full Text] [Related]
9. The presequence of rat liver aldehyde dehydrogenase requires the presence of an alpha-helix at its N-terminal region which is stabilized by the helix at its C termini. Wang Y; Weiner H J Biol Chem; 1993 Mar; 268(7):4759-65. PubMed ID: 8383124 [TBL] [Abstract][Full Text] [Related]
10. The N-terminal half of a mitochondrial presequence peptide inserts into cardiolipin-containing membranes. Consequences for the action of a transmembrane potential. Leenhouts JM; Török Z; Mandieau V; Goormaghtigh E; de Kruijff B FEBS Lett; 1996 Jun; 388(1):34-8. PubMed ID: 8654584 [TBL] [Abstract][Full Text] [Related]
11. Folding of the presequence of yeast pAPI into an amphipathic helix determines transport of the protein from the cytosol to the vacuole. Martinez E; Jimenez MA; Seguí-Real B; Vandekerckhove J; Sandoval IV J Mol Biol; 1997 Apr; 267(5):1124-38. PubMed ID: 9150401 [TBL] [Abstract][Full Text] [Related]
12. Interaction between cardiolipin and the mitochondrial presequence of cytochrome c oxidase subunit IV favours lipid mixing without destabilizing the bilayer structure. Mandieau V; Martin I; Ruysschaert JM FEBS Lett; 1995 Jul; 368(1):15-8. PubMed ID: 7615071 [TBL] [Abstract][Full Text] [Related]
13. Time resolution of binding and membrane insertion of a mitochondrial signal peptide: correlation with structural changes and evidence for cooperativity. Golding C; Senior S; Wilson MT; O'Shea P Biochemistry; 1996 Aug; 35(33):10931-7. PubMed ID: 8718886 [TBL] [Abstract][Full Text] [Related]
14. A novel property of a mitochondrial presequence. Its ability to induce cardiolipin-specific interbilayer contacts which are dissociated by a transmembrane potential. Leenhouts JM; de Gier J; de Kruijff B FEBS Lett; 1993 Jul; 327(2):172-6. PubMed ID: 8392951 [TBL] [Abstract][Full Text] [Related]
15. Conformation of human serum apolipoprotein A-I(166-185) in the presence of sodium dodecyl sulfate or dodecylphosphocholine by 1H-NMR and CD. Evidence for specific peptide-SDS interactions. Wang G; Treleaven WD; Cushley RJ Biochim Biophys Acta; 1996 Jun; 1301(3):174-84. PubMed ID: 8664326 [TBL] [Abstract][Full Text] [Related]
16. Amphiphilicity determines binding properties of three mitochondrial presequences to lipid surfaces. Hammen PK; Gorenstein DG; Weiner H Biochemistry; 1996 Mar; 35(12):3772-81. PubMed ID: 8619998 [TBL] [Abstract][Full Text] [Related]
17. Structure and topography of the membrane-binding C2 domain of factor VIII in the presence of dodecylphosphocholine micelles. Veeraraghavan S; Baleja JD; Gilbert GE Biochem J; 1998 Jun; 332 ( Pt 2)(Pt 2):549-55. PubMed ID: 9601086 [TBL] [Abstract][Full Text] [Related]
18. Conformational analysis of a mitochondrial presequence derived from the F1-ATPase beta-subunit by CD and NMR spectroscopy. Bruch MD; Hoyt DW Biochim Biophys Acta; 1992 Sep; 1159(1):81-93. PubMed ID: 1390913 [TBL] [Abstract][Full Text] [Related]
19. NMR studies of the low-density lipoprotein receptor-binding peptide of apolipoprotein E bound to dodecylphosphocholine micelles. Clayton D; Brereton IM; Kroon PA; Smith R Protein Sci; 1999 Sep; 8(9):1797-805. PubMed ID: 10493581 [TBL] [Abstract][Full Text] [Related]
20. Secondary structure and orientation of a chemically synthesized mitochondrial signal sequence in phospholipid bilayers. Goormaghtigh E; Martin I; Vandenbranden M; Brasseur R; Ruysschaert JM Biochem Biophys Res Commun; 1989 Jan; 158(2):610-6. PubMed ID: 2537078 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]