These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 7589489)

  • 21. Rotenone-insensitive NADH dehydrogenase is a potential source of superoxide in procyclic Trypanosoma brucei mitochondria.
    Fang J; Beattie DS
    Mol Biochem Parasitol; 2002 Aug; 123(2):135-42. PubMed ID: 12270629
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The relationship between electron flux and the redox poise of the quinone pool in plant mitochondria. Interplay between quinol-oxidizing and quinone-reducing pathways.
    Van den Bergen CW; Wagner AM; Krab K; Moore AL
    Eur J Biochem; 1994 Dec; 226(3):1071-8. PubMed ID: 7813462
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sensitivities of the alternative respiratory components of potato tuber mitochondria to thiol reagents and Ca2+.
    Mariano AB; Valente C; Cadena SM; Rocha ME; de Oliveira MB; Carnieri EG
    Plant Physiol Biochem; 2005 Jan; 43(1):61-7. PubMed ID: 15763667
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Succinate-driven reverse electron transport in the respiratory chain of plant mitochondria. The effects of rotenone and adenylates in relation to malate and oxaloacetate metabolism.
    Rustin P; Lance C
    Biochem J; 1991 Feb; 274 ( Pt 1)(Pt 1):249-55. PubMed ID: 2001241
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The mitochondrial external NADPH dehydrogenase modulates the leaf NADPH/NADP+ ratio in transgenic Nicotiana sylvestris.
    Liu YJ; Norberg FE; Szilágyi A; De Paepe R; Akerlund HE; Rasmusson AG
    Plant Cell Physiol; 2008 Feb; 49(2):251-63. PubMed ID: 18182402
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cell surface oxygen consumption by mitochondrial gene knockout cells.
    Herst PM; Tan AS; Scarlett DJ; Berridge MV
    Biochim Biophys Acta; 2004 Jun; 1656(2-3):79-87. PubMed ID: 15178469
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oxygen metabolism in plant/bacteria interactions: effect of DPI on the pseudo-NAD(P)H oxidase activity of peroxidase.
    Baker CJ; Deahl K; Domek J; Orlandi EW
    Biochem Biophys Res Commun; 1998 Nov; 252(2):461-4. PubMed ID: 9826552
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reverse electron transport effects on NADH formation and metmyoglobin reduction.
    Belskie KM; Van Buiten CB; Ramanathan R; Mancini RA
    Meat Sci; 2015 Jul; 105():89-92. PubMed ID: 25828162
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quinone dependent NADH dehydrogenation in mitochondria-like particles from Setaria digitata, a filarial parasite.
    Sivan VM; Raj RK
    Biochem Biophys Res Commun; 1992 Jul; 186(2):698-705. PubMed ID: 1497658
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biphasic oxidation of mitochondrial NAD(P)H.
    Lemeshko VV
    Biochem Biophys Res Commun; 2002 Feb; 291(1):170-5. PubMed ID: 11829479
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The regulation of exogenous NAD(P)H oxidation in spinach (Spinacia oleracea) leaf mitochondria by pH and cations.
    Edman K; Ericson I; Møller IM
    Biochem J; 1985 Dec; 232(2):471-7. PubMed ID: 3937519
    [TBL] [Abstract][Full Text] [Related]  

  • 32. NADP-Utilizing Enzymes in the Matrix of Plant Mitochondria.
    Rasmusson AG; Møller IM
    Plant Physiol; 1990 Nov; 94(3):1012-8. PubMed ID: 16667790
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A new dawn for plant mitochondrial NAD(P)H dehydrogenases.
    Møller IM
    Trends Plant Sci; 2002 Jun; 7(6):235-7. PubMed ID: 12049913
    [No Abstract]   [Full Text] [Related]  

  • 34. Involvement of mitochondria in the control of plant cell NAD(P)H reduction levels.
    Rasmusson AG; Wallström SV
    Biochem Soc Trans; 2010 Apr; 38(2):661-6. PubMed ID: 20298239
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of Alternative Mitochondrial Electron Transport Pathway Components in Chickpea Indicates a Differential Response to Salinity Stress between Cultivars.
    Sweetman C; Miller TK; Booth NJ; Shavrukov Y; Jenkins CLD; Soole KL; Day DA
    Int J Mol Sci; 2020 May; 21(11):. PubMed ID: 32481694
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mitochondrial malate dehydrogenase, decarboxylating ("malic" enzyme) and transhydrogenase activities of adult Hymenolepis microstoma (Cestoda).
    Fioravanti CF
    J Parasitol; 1982 Apr; 68(2):213-20. PubMed ID: 7077455
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction.
    Berridge MV; Tan AS
    Arch Biochem Biophys; 1993 Jun; 303(2):474-82. PubMed ID: 8390225
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mitochondria of mammalian Plasmodium spp.
    Fry M; Beesley JE
    Parasitology; 1991 Feb; 102 Pt 1():17-26. PubMed ID: 2038500
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Generation of transmembrane electrical potential during NADH oxidation via the external pathway and the fatty acid uncoupling effect after transient opening of the Ca2+-dependent cyclosporin A-sensitive pore in liver mitochondria.
    Bodrova ME; Dedukhova VI; Mokhova EN
    Biochemistry (Mosc); 2000 Apr; 65(4):477-84. PubMed ID: 10810187
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An electron-transport system associated with the outer membrane of liver mitochondria. A biochemical and morphological study.
    Sottocasa GL; Kuylenstierna B; Ernster L; Bergstrand A
    J Cell Biol; 1967 Feb; 32(2):415-38. PubMed ID: 10976232
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.