BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 7589497)

  • 1. Transition metal ions within human atherosclerotic lesions can catalyse the oxidation of low density lipoprotein by macrophages.
    Lamb DJ; Mitchinson MJ; Leake DS
    FEBS Lett; 1995 Oct; 374(1):12-6. PubMed ID: 7589497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does an acidic pH explain why low density lipoprotein is oxidised in atherosclerotic lesions?
    Leake DS
    Atherosclerosis; 1997 Mar; 129(2):149-57. PubMed ID: 9105556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron released from transferrin at acidic pH can catalyse the oxidation of low density lipoprotein.
    Lamb DJ; Leake DS
    FEBS Lett; 1994 Sep; 352(1):15-8. PubMed ID: 7925932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antioxidant properties of macrophages toward low-density lipoprotein.
    Baoutina A; Dean RT; Jessup W
    Trends Cardiovasc Med; 2001 Jan; 11(1):1-7. PubMed ID: 11413045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acidic pH increases the oxidation of LDL by macrophages.
    Morgan J; Leake DS
    FEBS Lett; 1993 Nov; 333(3):275-9. PubMed ID: 8224192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The oxidative modification of low density lipoprotein by human lymphocytes.
    Lamb DJ; Wilkins GM; Leake DS
    Atherosclerosis; 1992 Feb; 92(2-3):187-92. PubMed ID: 1632847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo and in vitro evidence for the glycoxidation of low density lipoprotein in human atherosclerotic plaques.
    Imanaga Y; Sakata N; Takebayashi S; Matsunaga A; Sasaki J; Arakawa K; Nagai R; Horiuchi S; Itabe H; Takano T
    Atherosclerosis; 2000 Jun; 150(2):343-55. PubMed ID: 10856526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative modification of low-density lipoprotein by human polymorphonuclear leucocytes to a form recognised by the lipoprotein scavenger pathway.
    Katsura M; Forster LA; Ferns GA; AnggÄrd EE
    Biochim Biophys Acta; 1994 Jul; 1213(2):231-7. PubMed ID: 8025135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucose oxidation and low-density lipoprotein-induced macrophage ceroid accumulation: possible implications for diabetic atherosclerosis.
    Hunt JV; Bottoms MA; Clare K; Skamarauskas JT; Mitchinson MJ
    Biochem J; 1994 May; 300 ( Pt 1)(Pt 1):243-9. PubMed ID: 8198540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal ion release from mechanically-disrupted human arterial wall. Implications for the development of atherosclerosis.
    Evans PJ; Smith C; Mitchinson MJ; Halliwell B
    Free Radic Res; 1995 Nov; 23(5):465-9. PubMed ID: 7581829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron in human atheroma and LDL oxidation by macrophages following erythrophagocytosis.
    Yuan XM; Anders WL; Olsson AG; Brunk UT
    Atherosclerosis; 1996 Jul; 124(1):61-73. PubMed ID: 8800494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolism of oxidized LDL by macrophages.
    Jessup W; Kritharides L
    Curr Opin Lipidol; 2000 Oct; 11(5):473-81. PubMed ID: 11048890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of 5-hydroxy-2-aminovaleric acid as a specific marker of metal catalysed oxidation of proline and arginine residues of low density lipoprotein apolipoprotein B-100 in human atherosclerotic lesions.
    Pietzsch J; Bergmann R
    J Clin Pathol; 2003 Aug; 56(8):622-3. PubMed ID: 12890816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acidic pH enables caeruloplasmin to catalyse the modification of low-density lipoprotein.
    Lamb DJ; Leake DS
    FEBS Lett; 1994 Jan; 338(2):122-6. PubMed ID: 8307168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of oxidized low density lipoprotein with macrophages in atherosclerosis, and the antiatherogenicity of antioxidants.
    Aviram M
    Eur J Clin Chem Clin Biochem; 1996 Aug; 34(8):599-608. PubMed ID: 8877334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glycoxidation and lipid peroxidation of low-density lipoprotein can synergistically enhance atherogenesis.
    Sakata N; Uesugi N; Takebayashi S; Nagai R; Jono T; Horiuchi S; Takeya M; Itabe H; Takano T; Myint T; Taniguchi N
    Cardiovasc Res; 2001 Feb; 49(2):466-75. PubMed ID: 11164857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mass spectrometric quantification of markers for protein oxidation by tyrosyl radical, copper, and hydroxyl radical in low density lipoprotein isolated from human atherosclerotic plaques.
    Leeuwenburgh C; Rasmussen JE; Hsu FF; Mueller DM; Pennathur S; Heinecke JW
    J Biol Chem; 1997 Feb; 272(6):3520-6. PubMed ID: 9013599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of EDTA on the oxidation of low density lipoprotein.
    Lamb DJ; Leake DS
    Atherosclerosis; 1992 May; 94(1):35-42. PubMed ID: 1632857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidation of lipoproteins and atherosclerosis.
    Luc G; Fruchart JC
    Am J Clin Nutr; 1991 Jan; 53(1 Suppl):206S-209S. PubMed ID: 1985389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Macrophage-derived foam cells freshly isolated from rabbit atherosclerotic lesions degrade modified lipoproteins, promote oxidation of low-density lipoproteins, and contain oxidation-specific lipid-protein adducts.
    Rosenfeld ME; Khoo JC; Miller E; Parthasarathy S; Palinski W; Witztum JL
    J Clin Invest; 1991 Jan; 87(1):90-9. PubMed ID: 1985115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.