These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 7589514)

  • 1. Specific RNA cleavages induced by manganese ions.
    Wrzesinski J; Michałowski D; Ciesiołka J; Krzyzosiak WJ
    FEBS Lett; 1995 Oct; 374(1):62-8. PubMed ID: 7589514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of magnesium, europium and lead binding sites in methionine initiator and elongator tRNAs by specific metal-ion-induced cleavages.
    Ciesiołka J; Wrzesinski J; Górnicki P; Podkowiński J; Krzyzosiak WJ
    Eur J Biochem; 1989 Dec; 186(1-2):71-7. PubMed ID: 2689176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cleavages induced by different metal ions in yeast tRNA(Phe) U59C60 mutants.
    Michałowski D; Wrzesinski J; Krzyzosiak W
    Biochemistry; 1996 Aug; 35(33):10727-34. PubMed ID: 8718862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of uridine dethiolation in the anticodon triplet of tRNA(Glu) on its association with tRNA(Phe).
    Houssier C; Degée P; Nicoghosian K; Grosjean H
    J Biomol Struct Dyn; 1988 Jun; 5(6):1259-66. PubMed ID: 2482764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specificity and mechanism of the cleavages induced in yeast tRNAPhe by magnesium ions.
    Marciniec T; Ciesiołka J; Wrzesiński J; Wiewiórowski M; Krzyzosiak WJ
    Acta Biochim Pol; 1989; 36(3-4):183-94. PubMed ID: 2485995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of modified nucleotides on structure of yeast tRNA(Phe). Comparative studies by metal ion-induced hydrolysis and nuclease mapping.
    Michałowski D; Wrzesinski J; Ciesiołka J; Krzyzosiak WJ
    Biochimie; 1996; 78(2):131-8. PubMed ID: 8818222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the lead(II)-induced cleavages in tRNAs in solution and effect of the Y-base removal in yeast tRNAPhe.
    Krzyzosiak WJ; Marciniec T; Wiewiorowski M; Romby P; Ebel JP; Giegé R
    Biochemistry; 1988 Jul; 27(15):5771-7. PubMed ID: 3179275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 5-Methylcytidine is required for cooperative binding of Mg2+ and a conformational transition at the anticodon stem-loop of yeast phenylalanine tRNA.
    Chen Y; Sierzputowska-Gracz H; Guenther R; Everett K; Agris PF
    Biochemistry; 1993 Sep; 32(38):10249-53. PubMed ID: 8399153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the environment of lanthanide binding sites in yeast tRNA(Phe) by specific metal-ion-promoted cleavages.
    Ciesiołka J; Marciniec T; Krzyzosiak W
    Eur J Biochem; 1989 Jun; 182(2):445-50. PubMed ID: 2661230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic RNA reactions of yeast tRNA(Phe) fragments.
    Deng HY; Termini J
    Biochemistry; 1992 Nov; 31(43):10518-28. PubMed ID: 1329951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural changes of yeast tRNA(Tyr) caused by the binding of divalent ions in the presence of spermine.
    Nöthig-Laslo V; Weygand-Durasević I; Kućan Z
    J Biomol Struct Dyn; 1985 Feb; 2(5):941-51. PubMed ID: 2855782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. tRNA prefers to kiss.
    Scarabino D; Crisari A; Lorenzini S; Williams K; Tocchini-Valentini GP
    EMBO J; 1999 Aug; 18(16):4571-8. PubMed ID: 10449422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of 5-methylcytidine in the anticodon arm of yeast tRNA(Phe): site-specific Mg2+ binding and coupled conformational transition in DNA analogs.
    Dao V; Guenther RH; Agris PF
    Biochemistry; 1992 Nov; 31(45):11012-9. PubMed ID: 1445839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anticodon domain methylated nucleosides of yeast tRNA(Phe) are significant recognition determinants in the binding of a phage display selected peptide.
    Mucha P; Szyk A; Rekowski P; Weiss PA; Agris PF
    Biochemistry; 2001 Nov; 40(47):14191-9. PubMed ID: 11714272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recognition of tertiary structure in tRNAs by Rh(phen)2phi3+, a new reagent for RNA structure-function mapping.
    Chow CS; Behlen LS; Uhlenbeck OC; Barton JK
    Biochemistry; 1992 Feb; 31(4):972-82. PubMed ID: 1734973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism, specificity and general properties of the yeast enzyme catalysing the formation of inosine 34 in the anticodon of transfer RNA.
    Auxilien S; Crain PF; Trewyn RW; Grosjean H
    J Mol Biol; 1996 Oct; 262(4):437-58. PubMed ID: 8893855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical potential of transfer RNAs: codon-anticodon recognition.
    Sharp KA; Honig B; Harvey SC
    Biochemistry; 1990 Jan; 29(2):340-6. PubMed ID: 2405900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of the angle between the anticodon and aminoacyl acceptor stems of yeast phenylalanyl tRNA in solution.
    Friederich MW; Gast FU; Vacano E; Hagerman PJ
    Proc Natl Acad Sci U S A; 1995 May; 92(11):4803-7. PubMed ID: 7761403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Orientation of the tRNA anticodon in the ribosomal P-site: quantitative footprinting with U33-modified, anticodon stem and loop domains.
    Ashraf SS; Guenther R; Agris PF
    RNA; 1999 Sep; 5(9):1191-9. PubMed ID: 10496220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unusual anticodon loop structure found in E.coli lysine tRNA.
    Watanabe K; Hayashi N; Oyama A; Nishikawa K; Ueda T; Miura K
    Nucleic Acids Res; 1994 Jan; 22(1):79-87. PubMed ID: 8127658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.