These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
263 related articles for article (PubMed ID: 7590257)
1. A protein-RNA interaction network facilitates the template-independent cooperative assembly on RNA polymerase of a stable antitermination complex containing the lambda N protein. Mogridge J; Mah TF; Greenblatt J Genes Dev; 1995 Nov; 9(22):2831-45. PubMed ID: 7590257 [TBL] [Abstract][Full Text] [Related]
2. Involvement of boxA nucleotides in the formation of a stable ribonucleoprotein complex containing the bacteriophage lambda N protein. Mogridge J; Mah TF; Greenblatt J J Biol Chem; 1998 Feb; 273(7):4143-8. PubMed ID: 9461609 [TBL] [Abstract][Full Text] [Related]
3. Recognition of boxA antiterminator RNA by the E. coli antitermination factors NusB and ribosomal protein S10. Nodwell JR; Greenblatt J Cell; 1993 Jan; 72(2):261-8. PubMed ID: 7678781 [TBL] [Abstract][Full Text] [Related]
4. Host factor requirements for processive antitermination of transcription and suppression of pausing by the N protein of bacteriophage lambda. Mason SW; Li J; Greenblatt J J Biol Chem; 1992 Sep; 267(27):19418-26. PubMed ID: 1388170 [TBL] [Abstract][Full Text] [Related]
5. Assembly of transcription elongation complexes containing the N protein of phage lambda and the Escherichia coli elongation factors NusA, NusB, NusG, and S10. Mason SW; Greenblatt J Genes Dev; 1991 Aug; 5(8):1504-12. PubMed ID: 1831176 [TBL] [Abstract][Full Text] [Related]
6. NusG, a new Escherichia coli elongation factor involved in transcriptional antitermination by the N protein of phage lambda. Li J; Horwitz R; McCracken S; Greenblatt J J Biol Chem; 1992 Mar; 267(9):6012-9. PubMed ID: 1532577 [TBL] [Abstract][Full Text] [Related]
7. The nut site of bacteriophage lambda is made of RNA and is bound by transcription antitermination factors on the surface of RNA polymerase. Nodwell JR; Greenblatt J Genes Dev; 1991 Nov; 5(11):2141-51. PubMed ID: 1834523 [TBL] [Abstract][Full Text] [Related]
8. Assembly of the N-dependent antitermination complex of phage lambda: NusA and RNA bind independently to different unfolded domains of the N protein. Van Gilst MR; von Hippel PH J Mol Biol; 1997 Nov; 274(2):160-73. PubMed ID: 9398524 [TBL] [Abstract][Full Text] [Related]
9. Functional importance of regions in Escherichia coli elongation factor NusA that interact with RNA polymerase, the bacteriophage lambda N protein and RNA. Mah TF; Li J; Davidson AR; Greenblatt J Mol Microbiol; 1999 Nov; 34(3):523-37. PubMed ID: 10564494 [TBL] [Abstract][Full Text] [Related]
10. Action of an RNA site at a distance: role of the nut genetic signal in transcription antitermination by phage-lambda N gene product. Whalen WA; Das A New Biol; 1990 Nov; 2(11):975-91. PubMed ID: 2151659 [TBL] [Abstract][Full Text] [Related]
11. Bacteriophage lambda N-dependent transcription antitermination. Competition for an RNA site may regulate antitermination. Patterson TA; Zhang Z; Baker T; Johnson LL; Friedman DI; Court DL J Mol Biol; 1994 Feb; 236(1):217-28. PubMed ID: 8107107 [TBL] [Abstract][Full Text] [Related]
12. RNA-binding specificity of E. coli NusA. Prasch S; Jurk M; Washburn RS; Gottesman ME; Wöhrl BM; Rösch P Nucleic Acids Res; 2009 Aug; 37(14):4736-42. PubMed ID: 19515940 [TBL] [Abstract][Full Text] [Related]
13. Bipartite function of a small RNA hairpin in transcription antitermination in bacteriophage lambda. Chattopadhyay S; Garcia-Mena J; DeVito J; Wolska K; Das A Proc Natl Acad Sci U S A; 1995 Apr; 92(9):4061-5. PubMed ID: 7732031 [TBL] [Abstract][Full Text] [Related]
14. Interactions of an Arg-rich region of transcription elongation protein NusA with NUT RNA: implications for the order of assembly of the lambda N antitermination complex in vivo. Zhou Y; Mah TF; Yu YT; Mogridge J; Olson ER; Greenblatt J; Friedman DI J Mol Biol; 2001 Jun; 310(1):33-49. PubMed ID: 11419935 [TBL] [Abstract][Full Text] [Related]
15. Bacteriophage lambda N protein alone can induce transcription antitermination in vitro. Rees WA; Weitzel SE; Yager TD; Das A; von Hippel PH Proc Natl Acad Sci U S A; 1996 Jan; 93(1):342-6. PubMed ID: 8552635 [TBL] [Abstract][Full Text] [Related]
16. The interaction surface of a bacterial transcription elongation factor required for complex formation with an antiterminator during transcription antitermination. Mishra S; Mohan S; Godavarthi S; Sen R J Biol Chem; 2013 Sep; 288(39):28089-103. PubMed ID: 23913688 [TBL] [Abstract][Full Text] [Related]
17. An elongation control particle containing the N gene transcriptional antitermination protein of bacteriophage lambda. Horwitz RJ; Li J; Greenblatt J Cell; 1987 Nov; 51(4):631-41. PubMed ID: 2445491 [TBL] [Abstract][Full Text] [Related]
18. Escherichia coli NusA is required for efficient RNA binding by phage HK022 nun protein. Watnick RS; Gottesman ME Proc Natl Acad Sci U S A; 1998 Feb; 95(4):1546-51. PubMed ID: 9465052 [TBL] [Abstract][Full Text] [Related]
19. N protein from lambdoid phages transforms NusA into an antiterminator by modulating NusA-RNA polymerase flap domain interactions. Mishra S; Sen R Nucleic Acids Res; 2015 Jul; 43(12):5744-58. PubMed ID: 25990722 [TBL] [Abstract][Full Text] [Related]
20. Independent ligand-induced folding of the RNA-binding domain and two functionally distinct antitermination regions in the phage lambda N protein. Mogridge J; Legault P; Li J; Van Oene MD; Kay LE; Greenblatt J Mol Cell; 1998 Jan; 1(2):265-75. PubMed ID: 9659923 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]