These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 7590306)
1. Aspartyl-tRNA synthetase of the hyperthermophilic archaeon Pyrococcus sp. KOD1 has a chimerical structure of eukaryotic and bacterial enzymes. Imanaka T; Lee S; Takagi M; Fujiwara S Gene; 1995 Oct; 164(1):153-6. PubMed ID: 7590306 [TBL] [Abstract][Full Text] [Related]
2. Unusual enzyme characteristics of aspartyl-tRNA synthetase from hyperthermophilic archaeon Pyrococcus sp. KOD1. Fujiwara S; Lee SG; Haruki M; Kanaya S; Takagi M; Imanaka T FEBS Lett; 1996 Sep; 394(1):66-70. PubMed ID: 8925930 [TBL] [Abstract][Full Text] [Related]
3. Characterization of recombinant glutamine synthetase from the hyperthermophilic archaeon Pyrococcus sp. strain KOD1. Adul Rahman RN; Jongsareejit B; Fujiwara S; Imanaka T Appl Environ Microbiol; 1997 Jun; 63(6):2472-6. PubMed ID: 9172372 [TBL] [Abstract][Full Text] [Related]
4. Gene cloning, sequencing and enzymatic properties of glutamate synthase from the hyperthermophilic archaeon Pyrococcus sp. KOD1. Jongsareejit B; Rahman RN; Fujiwara S; Imanaka T Mol Gen Genet; 1997 May; 254(6):635-42. PubMed ID: 9202379 [TBL] [Abstract][Full Text] [Related]
6. Sequence, overproduction and crystallization of aspartyl-tRNA synthetase from Thermus thermophilus. Implications for the structure of prokaryotic aspartyl-tRNA synthetases. Poterszman A; Plateau P; Moras D; Blanquet S; Mazauric MH; Kreutzer R; Kern D FEBS Lett; 1993 Jul; 325(3):183-6. PubMed ID: 8319804 [TBL] [Abstract][Full Text] [Related]
7. The nondiscriminating aspartyl-tRNA synthetase from Helicobacter pylori: anticodon-binding domain mutations that impact tRNA specificity and heterologous toxicity. Chuawong P; Hendrickson TL Biochemistry; 2006 Jul; 45(26):8079-87. PubMed ID: 16800632 [TBL] [Abstract][Full Text] [Related]
8. Evolutionary divergence of the archaeal aspartyl-tRNA synthetases into discriminating and nondiscriminating forms. Tumbula-Hansen D; Feng L; Toogood H; Stetter KO; Söll D J Biol Chem; 2002 Oct; 277(40):37184-90. PubMed ID: 12149259 [TBL] [Abstract][Full Text] [Related]
9. Expanding tRNA recognition of a tRNA synthetase by a single amino acid change. Feng L; Tumbula-Hansen D; Toogood H; Soll D Proc Natl Acad Sci U S A; 2003 May; 100(10):5676-81. PubMed ID: 12730374 [TBL] [Abstract][Full Text] [Related]
10. Indolepyruvate ferredoxin oxidoreductase from Pyrococcus sp. KOD1 possesses a mosaic structure showing features of various oxidoreductases. Siddiqui MA; Fujiwara S; Imanaka T Mol Gen Genet; 1997 Apr; 254(4):433-9. PubMed ID: 9180697 [TBL] [Abstract][Full Text] [Related]
11. Expression of human aspartyl-tRNA synthetase in Escherichia coli. Functional analysis of the N-terminal putative amphiphilic helix. Escalante C; Yang DC J Biol Chem; 1993 Mar; 268(8):6014-23. PubMed ID: 8449960 [TBL] [Abstract][Full Text] [Related]
12. Sequence analysis of glutamate dehydrogenase (GDH) from the hyperthermophilic archaeon Pyrococcus sp. KOD1 and comparison of the enzymatic characteristics of native and recombinant GDHs. Rahman RN; Fujiwara S; Takagi M; Imanaka T Mol Gen Genet; 1998 Feb; 257(3):338-47. PubMed ID: 9520268 [TBL] [Abstract][Full Text] [Related]
13. Sequence, expression in Escherichia coli, and analysis of the gene encoding a novel intracellular protease (PfpI) from the hyperthermophilic archaeon Pyrococcus furiosus. Halio SB; Blumentals II; Short SA; Merrill BM; Kelly RM J Bacteriol; 1996 May; 178(9):2605-12. PubMed ID: 8626329 [TBL] [Abstract][Full Text] [Related]
14. Crystal structure of the N-terminal anticodon-binding domain of the nondiscriminating aspartyl-tRNA synthetase from Helicobacter pylori. Songsiriritthigul C; Suebka S; Chen CJ; Fuengfuloy P; Chuawong P Acta Crystallogr F Struct Biol Commun; 2017 Feb; 73(Pt 2):62-69. PubMed ID: 28177315 [TBL] [Abstract][Full Text] [Related]
15. Aspartyl-tRNA synthetase from Escherichia coli: cloning and characterisation of the gene, homologies of its translated amino acid sequence with asparaginyl- and lysyl-tRNA synthetases. Eriani G; Dirheimer G; Gangloff J Nucleic Acids Res; 1990 Dec; 18(23):7109-18. PubMed ID: 2129559 [TBL] [Abstract][Full Text] [Related]
16. Crystal structure of aspartyl-tRNA synthetase from Pyrococcus kodakaraensis KOD: archaeon specificity and catalytic mechanism of adenylate formation. Schmitt E; Moulinier L; Fujiwara S; Imanaka T; Thierry JC; Moras D EMBO J; 1998 Sep; 17(17):5227-37. PubMed ID: 9724658 [TBL] [Abstract][Full Text] [Related]
17. Human asparaginyl-tRNA synthetase: molecular cloning and the inference of the evolutionary history of Asx-tRNA synthetase family. Shiba K; Motegi H; Yoshida M; Noda T Nucleic Acids Res; 1998 Nov; 26(22):5045-51. PubMed ID: 9801298 [TBL] [Abstract][Full Text] [Related]
18. A RecA/RAD51 homologue from a hyperthermophilic archaeon retains the major RecA domain only. Rashid N; Morikawa M; Imanaka T Mol Gen Genet; 1996 Dec; 253(3):397-400. PubMed ID: 9003328 [TBL] [Abstract][Full Text] [Related]
19. Pk-cdcA encodes a CDC48/VCP homolog in the hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1: transcriptional and enzymatic characterization. Jeon SJ; Fujiwara S; Takagi M; Imanaka T Mol Gen Genet; 1999 Oct; 262(3):559-67. PubMed ID: 10589845 [TBL] [Abstract][Full Text] [Related]
20. An abnormally acidic TATA-binding protein from a hyperthermophilic archaeon. Rashid N; Morikawa M; Imanaka T Gene; 1995 Dec; 166(1):139-43. PubMed ID: 8529878 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]