These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 75905)

  • 1. The in vitro metabolism of lindane by an enzyme preparation from chicken liver.
    Foster TS; Saha JG
    J Environ Sci Health B; 1978; 13(1):25-45. PubMed ID: 75905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chlorobenzene-impaired lindane metabolism and the effect of pretreatment with chlorobenzene, lindane, or chlorobenzene plus lindane.
    Chadwick RW; Copeland MF; Froehlich R; Cooke N
    J Toxicol Environ Health; 1983; 12(4-6):599-610. PubMed ID: 6199507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epoxidation of the lindane metabolite, beta-PCCH, by human- and rat-liver microsomes.
    Fitzloff JF; Pan JC
    Xenobiotica; 1984 Jul; 14(7):599-604. PubMed ID: 6209866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contributions to ecological chemistry CVII1. Fate of lindane-14C in lettuce, endives and soil under outdoor conditions.
    Kohli J; Weisgerber I; Klein W; Korte F
    J Environ Sci Health B; 1976; 11(1):23-32. PubMed ID: 58883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lindane metabolism by human and rat liver microsomes.
    Fitzloff JF; Portig J; Stein K
    Xenobiotica; 1982 Mar; 12(3):197-202. PubMed ID: 6180560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymes involved in the biodegradation of hexachlorocyclohexane: a mini review.
    Camacho-Pérez B; Ríos-Leal E; Rinderknecht-Seijas N; Poggi-Varaldo HM
    J Environ Manage; 2012 Mar; 95 Suppl():S306-18. PubMed ID: 21992990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surveying biotransformations with à la carte genetic traps: translating dehydrochlorination of lindane (gamma-hexachlorocyclohexane) into lacZ-based phenotypes.
    Mohn WW; Garmendia J; Galvao TC; de Lorenzo V
    Environ Microbiol; 2006 Mar; 8(3):546-55. PubMed ID: 16478460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Urinary metabolites from gamma- and beta-BHC in the mouse: chlorophenol conjugates.
    Kurihara N
    Environ Qual Saf; 1975; 4():56-73. PubMed ID: 53148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioisomerization of lindane in rats.
    Copeland MF; Chadwick RW
    J Environ Pathol Toxicol; 1979; 2(3):737-49. PubMed ID: 84852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolism of gamma-hexachlorocyclohexan (HCH) in vivo. Metabolism of orally administered gamma-2,3,4,5,6-pentachlorocyclohexen (PCCH).
    Engst R; Macholz RM; Kujawa M
    J Environ Sci Health B; 1978; 13(4):425-7. PubMed ID: 81846
    [No Abstract]   [Full Text] [Related]  

  • 11. Biotransformation and toxicity of lindane and its metabolite hexachlorobenzene in mammals.
    Gopalaswamy UV; Aiyar AS
    IARC Sci Publ; 1986; (77):267-76. PubMed ID: 2439452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of age and obesity on the metabolism of lindane by black a/a, yellow Avy/a, and pseudoagouti Avy/a phenotypes of (YS x VY) F1 hybrid mice.
    Chadwick RW; Copeland MF; Wolff GL; Cooke N; Whitehouse DA; Mole ML
    J Toxicol Environ Health; 1985; 16(6):771-96. PubMed ID: 2419580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the role of LinA and LinB in biodegradation of delta-hexachlorocyclohexane.
    Wu J; Hong Q; Sun Y; Hong Y; Yan Q; Li S
    Environ Microbiol; 2007 Sep; 9(9):2331-40. PubMed ID: 17686029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic reduction of naltrexone II. In vitro studies using liver from guinea pig, monkey and rat.
    Malspeis L; Ludden TM; Bathala MS; Morrison BE; Feller DR; Reuning RH
    Res Commun Chem Pathol Pharmacol; 1976 Jul; 14(3):393-406. PubMed ID: 822483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New metabolites in the degradation of alpha- and gamma-hexachlorocyclohexane (HCH): pentachlorocyclohexenes are hydroxylated to cyclohexenols and cyclohexenediols by the haloalkane dehalogenase LinB from Sphingobium indicum B90A.
    Raina V; Rentsch D; Geiger T; Sharma P; Buser HR; Holliger C; Lal R; Kohler HP
    J Agric Food Chem; 2008 Aug; 56(15):6594-603. PubMed ID: 18598034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolism of beta-hexachlorocyclohexane-14C in rats following low dosing in the daily diet.
    Lay JP; Klein W; Korte F; Richter E
    J Environ Sci Health B; 1981; 16(3):227-38. PubMed ID: 6166652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative metabolism of the renal carcinogen 1,4-dichlorobenzene in rat: identification and quantitation of novel metabolites.
    Klos C; Dekant W
    Xenobiotica; 1994 Oct; 24(10):965-76. PubMed ID: 7900412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Species comparison of in vitro metabolism of aflatoxin B1.
    Roebuck BD; Wogan GN
    Cancer Res; 1977 Jun; 37(6):1649-56. PubMed ID: 404034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro biotransformation and investigation of metabolic enzymes possibly responsible for the metabolism of bisdesoxyolaquindox in the liver fractions of rats, chicken, and pigs.
    Liu ZY; Chen DM; Huang LL; Tao YF; Yao M; Yuan ZH
    Toxicology; 2011 Jan; 279(1-3):155-66. PubMed ID: 20955753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glutathione conjugate formation from hexachlorocyclohexane and pentachlorocyclohexene by rat liver in vitro.
    Portig J; Kraus P; Stein K; Koransky W; Noack G; Gross B; Sodomann S
    Xenobiotica; 1979 Jun; 9(6):353-78. PubMed ID: 91272
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.