These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 7592345)

  • 1. Function and stationary-phase induction of periplasmic copper-zinc superoxide dismutase and catalase/peroxidase in Caulobacter crescentus.
    Schnell S; Steinman HM
    J Bacteriol; 1995 Oct; 177(20):5924-9. PubMed ID: 7592345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Function of periplasmic copper-zinc superoxide dismutase in Caulobacter crescentus.
    Steinman HM
    J Bacteriol; 1993 Feb; 175(4):1198-202. PubMed ID: 8432713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalase-peroxidase activity is decreased in a Caulobacter crescentus rho mutant.
    Italiani VC; Braz VS; Xiao H; Steinman HM; Marques MV
    FEMS Microbiol Lett; 2010 Feb; 303(1):48-54. PubMed ID: 20002190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Copper-zinc superoxide dismutase of Caulobacter crescentus: cloning, sequencing, and mapping of the gene and periplasmic location of the enzyme.
    Steinman HM; Ely B
    J Bacteriol; 1990 Jun; 172(6):2901-10. PubMed ID: 2345128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Periplasmic copper-zinc superoxide dismutase of Legionella pneumophila: role in stationary-phase survival.
    St John G; Steinman HM
    J Bacteriol; 1996 Mar; 178(6):1578-84. PubMed ID: 8626284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalase-peroxidase of Caulobacter crescentus: function and role in stationary-phase survival.
    Steinman HM; Fareed F; Weinstein L
    J Bacteriol; 1997 Nov; 179(21):6831-6. PubMed ID: 9352936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The regulation and role of the periplasmic copper, zinc superoxide dismutase of Escherichia coli.
    Gort AS; Ferber DM; Imlay JA
    Mol Microbiol; 1999 Apr; 32(1):179-91. PubMed ID: 10216871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a regulator that controls stationary-phase expression of catalase-peroxidase in Caulobacter crescentus.
    Rava PS; Somma L; Steinman HM
    J Bacteriol; 1999 Oct; 181(19):6152-9. PubMed ID: 10498730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron incorporation into MnSOD A (bacterial Mn-dependent superoxide dismutase) leads to the formation of a peroxidase/catalase implicated in oxidative damage to bacteria.
    Ganini D; Petrovich RM; Edwards LL; Mason RP
    Biochim Biophys Acta; 2015 Sep; 1850(9):1795-805. PubMed ID: 25964067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Periplasmic copper-zinc superoxide dismutase protects Haemophilus ducreyi from exogenous superoxide.
    San Mateo LR; Hobbs MM; Kawula TH
    Mol Microbiol; 1998 Jan; 27(2):391-404. PubMed ID: 9484894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalase and superoxide dismutase in Escherichia coli.
    Schwartz CE; Krall J; Norton L; McKay K; Kay D; Lynch RE
    J Biol Chem; 1983 May; 258(10):6277-81. PubMed ID: 6304032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of catalase-peroxidase KatG is OxyR dependent and Fur independent in Caulobacter crescentus.
    Italiani VC; da Silva Neto JF; Braz VS; Marques MV
    J Bacteriol; 2011 Apr; 193(7):1734-44. PubMed ID: 21257767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The iron superoxide dismutase of Legionella pneumophila is essential for viability.
    Sadosky AB; Wilson JW; Steinman HM; Shuman HA
    J Bacteriol; 1994 Jun; 176(12):3790-9. PubMed ID: 8206858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning and analysis of sodC, encoding the copper-zinc superoxide dismutase of Escherichia coli.
    Imlay KR; Imlay JA
    J Bacteriol; 1996 May; 178(9):2564-71. PubMed ID: 8626323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship of resistance to oxygen free radicals to CuZn-superoxide dismutase activity in transgenic, transfected, and trisomic cells.
    Huang TT; Carlson EJ; Leadon SA; Epstein CJ
    FASEB J; 1992 Feb; 6(3):903-10. PubMed ID: 1740238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induction of superoxide dismutases in Photobacterium leiognathi.
    Kobayashi H; Tonokawa H; Fukasawa S; Yamakura F
    Free Radic Res Commun; 1991; 12-13 Pt 1():437-41. PubMed ID: 2071047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular characterization and oxidative stress response of an intracellular Cu/Zn superoxide dismutase (CuZnSOD) of the whitefly, Bemisia tabaci.
    Li JM; Su YL; Gao XL; He J; Liu SS; Wang XW
    Arch Insect Biochem Physiol; 2011 Jul; 77(3):118-33. PubMed ID: 21541989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overexpression of copper zinc superoxide dismutase suppresses human glioma cell growth.
    Zhang Y; Zhao W; Zhang HJ; Domann FE; Oberley LW
    Cancer Res; 2002 Feb; 62(4):1205-12. PubMed ID: 11861405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional significance of a periplasmic Mn-superoxide dismutase from Aeromonas hydrophila.
    Leclère V; Béchet M; Blondeau R
    J Appl Microbiol; 2004; 96(4):828-33. PubMed ID: 15012822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutagenesis in Escherichia coli K-12 mutants defective in superoxide dismutase or catalase.
    Prieto-Alamo MJ; Abril N; Pueyo C
    Carcinogenesis; 1993 Feb; 14(2):237-44. PubMed ID: 8382113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.