These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 7592345)
21. Superoxide-mediated cytotoxicity in superoxide dismutase-deficient fetal fibroblasts. Huang TT; Yasunami M; Carlson EJ; Gillespie AM; Reaume AG; Hoffman EK; Chan PH; Scott RW; Epstein CJ Arch Biochem Biophys; 1997 Aug; 344(2):424-32. PubMed ID: 9264557 [TBL] [Abstract][Full Text] [Related]
22. Age-dependent basal level and induction capacity of copper-zinc and manganese superoxide dismutase and other scavenging enzyme activities in leukocytes from young and elderly adults. Niwa Y; Iizawa O; Ishimoto K; Akamatsu H; Kanoh T Am J Pathol; 1993 Jul; 143(1):312-20. PubMed ID: 8317554 [TBL] [Abstract][Full Text] [Related]
23. Characterization of the iron superoxide dismutase gene of Azotobacter vinelandii: sodB may be essential for viability. Qurollo BA; Bishop PE; Hassan HM Can J Microbiol; 2001 Jan; 47(1):63-71. PubMed ID: 15049451 [TBL] [Abstract][Full Text] [Related]
24. Whole-genome transcriptional analysis of heavy metal stresses in Caulobacter crescentus. Hu P; Brodie EL; Suzuki Y; McAdams HH; Andersen GL J Bacteriol; 2005 Dec; 187(24):8437-49. PubMed ID: 16321948 [TBL] [Abstract][Full Text] [Related]
25. Escherichia coli expresses a copper- and zinc-containing superoxide dismutase. Benov LT; Fridovich I J Biol Chem; 1994 Oct; 269(41):25310-4. PubMed ID: 7929223 [TBL] [Abstract][Full Text] [Related]
26. [Role of catalase and superoxide dismutase in the yeast Saccharomyces cerevisiae response to hydrogen peroxide in exponential phase of growth]. Baĭliak MM; Semchyshyn HM; Lushchak VI Ukr Biokhim Zh (1999); 2006; 78(2):79-85. PubMed ID: 17100288 [TBL] [Abstract][Full Text] [Related]
27. Biosynthesis of superoxide dismutase in Saccharomyces cerevisiae: effects of paraquat and copper. Lee FJ; Hassan HM J Free Radic Biol Med; 1985; 1(4):319-25. PubMed ID: 3013982 [TBL] [Abstract][Full Text] [Related]
28. The role of periplasmic antioxidant enzymes (superoxide dismutase and thiol peroxidase) of the Shiga toxin-producing Escherichia coli O157:H7 in the formation of biofilms. Kim YH; Lee Y; Kim S; Yeom J; Yeom S; Seok Kim B; Oh S; Park S; Jeon CO; Park W Proteomics; 2006 Dec; 6(23):6181-93. PubMed ID: 17133368 [TBL] [Abstract][Full Text] [Related]
29. Cloning and characterization of the katB gene of Pseudomonas aeruginosa encoding a hydrogen peroxide-inducible catalase: purification of KatB, cellular localization, and demonstration that it is essential for optimal resistance to hydrogen peroxide. Brown SM; Howell ML; Vasil ML; Anderson AJ; Hassett DJ J Bacteriol; 1995 Nov; 177(22):6536-44. PubMed ID: 7592431 [TBL] [Abstract][Full Text] [Related]
30. Effect of endogenous glutathione, superoxide dismutases, catalase, and glutathione peroxidase on adriamycin tolerance of Chinese hamster ovary cells. Keizer HG; van Rijn J; Pinedo HM; Joenje H Cancer Res; 1988 Aug; 48(16):4493-7. PubMed ID: 3396001 [TBL] [Abstract][Full Text] [Related]
31. Carbon tetrachloride toxicity on Escherichia coli exacerbated by superoxide. Yamamoto H; Nagano T; Hirobe M J Biol Chem; 1988 Sep; 263(25):12224-7. PubMed ID: 2842324 [TBL] [Abstract][Full Text] [Related]
32. Transfection with human copper-zinc superoxide dismutase induces bidirectional alterations in other antioxidant enzymes, proteins, growth factor response, and paraquat resistance. Kelner MJ; Bagnell R; Montoya M; Estes L; Uglik SF; Cerutti P Free Radic Biol Med; 1995 Mar; 18(3):497-506. PubMed ID: 9101240 [TBL] [Abstract][Full Text] [Related]
33. CztR, a LysR-type transcriptional regulator involved in zinc homeostasis and oxidative stress defense in Caulobacter crescentus. Braz VS; da Silva Neto JF; Italiani VC; Marques MV J Bacteriol; 2010 Oct; 192(20):5480-8. PubMed ID: 20709896 [TBL] [Abstract][Full Text] [Related]
34. Prokaryotic iron superoxide dismutase replaces cytosolic copper, zinc superoxide dismutase in protecting yeast cells against oxidative stress. Agius DR; Bannister WH; Balzan R Biochem Mol Biol Int; 1998 Jan; 44(1):41-9. PubMed ID: 9503146 [TBL] [Abstract][Full Text] [Related]
36. Effect of endocrine disruptor para-nonylphenol on the cell growth and oxygen radical generation in Escherichia coli mutant cells deficient in catalase and superoxide dismutase. Okai Y; Sato EF; Higashi-Okai K; Inoue M Free Radic Biol Med; 2004 Nov; 37(9):1412-8. PubMed ID: 15454280 [TBL] [Abstract][Full Text] [Related]
37. Overexpression of Cu/Zn-superoxide dismutase and/or catalase in mice inhibits aorta smooth muscle cell proliferation. Shi M; Yang H; Motley ED; Guo Z Am J Hypertens; 2004 May; 17(5 Pt 1):450-6. PubMed ID: 15110906 [TBL] [Abstract][Full Text] [Related]
38. The paradigm that all oxygen-respiring eukaryotes have cytosolic CuZn-superoxide dismutase and that Mn-superoxide dismutase is localized to the mitochondria does not apply to a large group of marine arthropods. Brouwer M; Brouwer TH; Grater W; Enghild JJ; Thogersen IB Biochemistry; 1997 Oct; 36(43):13381-8. PubMed ID: 9341231 [TBL] [Abstract][Full Text] [Related]
39. Effects of overproduction of superoxide dismutases in Escherichia coli on inhibition of growth and on induction of glucose-6-phosphate dehydrogenase by paraquat. Liochev SI; Fridovich I Arch Biochem Biophys; 1992 Apr; 294(1):138-43. PubMed ID: 1312800 [TBL] [Abstract][Full Text] [Related]
40. Pseudomonas aeruginosa sodA and sodB mutants defective in manganese- and iron-cofactored superoxide dismutase activity demonstrate the importance of the iron-cofactored form in aerobic metabolism. Hassett DJ; Schweizer HP; Ohman DE J Bacteriol; 1995 Nov; 177(22):6330-7. PubMed ID: 7592406 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]