These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 7592483)
1. Growth on octane alters the membrane lipid fatty acids of Pseudomonas oleovorans due to the induction of alkB and synthesis of octanol. Chen Q; Janssen DB; Witholt B J Bacteriol; 1995 Dec; 177(23):6894-901. PubMed ID: 7592483 [TBL] [Abstract][Full Text] [Related]
2. The alkane oxidation system of Pseudomonas oleovorans: induction of the alk genes in Escherichia coli W3110 (pGEc47) affects membrane biogenesis and results in overexpression of alkane hydroxylase in a distinct cytoplasmic membrane subfraction. Nieboer M; Kingma J; Witholt B Mol Microbiol; 1993 Jun; 8(6):1039-51. PubMed ID: 8361351 [TBL] [Abstract][Full Text] [Related]
3. Oxidation of methyl tert-butyl ether by alkane hydroxylase in dicyclopropylketone-induced and n-octane-grown Pseudomonas putida GPo1. Smith CA; Hyman MR Appl Environ Microbiol; 2004 Aug; 70(8):4544-50. PubMed ID: 15294784 [TBL] [Abstract][Full Text] [Related]
4. Physiological changes and alk gene instability in Pseudomonas oleovorans during induction and expression of alk genes. Chen Q; Janssen DB; Witholt B J Bacteriol; 1996 Sep; 178(18):5508-12. PubMed ID: 8808943 [TBL] [Abstract][Full Text] [Related]
5. Overproduction of a foreign membrane protein in Escherichia coli stimulates and depends on phospholipid synthesis. Nieboer M; Vis AJ; Witholt B Eur J Biochem; 1996 Oct; 241(2):691-6. PubMed ID: 8917473 [TBL] [Abstract][Full Text] [Related]
6. The PalkBFGHJKL promoter is under carbon catabolite repression control in Pseudomonas oleovorans but not in Escherichia coli alk+ recombinants. Staijen IE; Marcionelli R; Witholt B J Bacteriol; 1999 Mar; 181(5):1610-6. PubMed ID: 10049394 [TBL] [Abstract][Full Text] [Related]
7. The AlkB monooxygenase of Pseudomonas oleovorans--synthesis, stability and level in recombinant Escherichia coli and the native host. Staijen IE; Hatzimanikatis V; Witholt B Eur J Biochem; 1997 Mar; 244(2):462-70. PubMed ID: 9119013 [TBL] [Abstract][Full Text] [Related]
8. Determinants for overproduction of the Pseudomonas oleovorans cytoplasmic membrane protein alkane hydroxylase in alk+ Escherichia coli W3110. Nieboer M; Gunnewijk M; van Beilen JB; Witholt B J Bacteriol; 1997 Feb; 179(3):762-8. PubMed ID: 9006031 [TBL] [Abstract][Full Text] [Related]
9. Synthesis of alkane hydroxylase of Pseudomonas oleovorans increases the iron requirement of alk+ bacterial strains. Staijen IE; Witholt B Biotechnol Bioeng; 1998 Jan; 57(2):228-37. PubMed ID: 10099198 [TBL] [Abstract][Full Text] [Related]
10. Controlled and functional expression of the Pseudomonas oleovorans alkane utilizing system in Pseudomonas putida and Escherichia coli. Eggink G; Lageveen RG; Altenburg B; Witholt B J Biol Chem; 1987 Dec; 262(36):17712-8. PubMed ID: 2826430 [TBL] [Abstract][Full Text] [Related]
11. Expression, stability and performance of the three-component alkane mono-oxygenase of Pseudomonas oleovorans in Escherichia coli. Staijen IE; Van Beilen JB; Witholt B Eur J Biochem; 2000 Apr; 267(7):1957-65. PubMed ID: 10727934 [TBL] [Abstract][Full Text] [Related]
12. Characterization of three propane-inducible oxygenases in Mycobacterium sp. strain ENV421. Masuda H; McClay K; Steffan RJ; Zylstra GJ Lett Appl Microbiol; 2012 Sep; 55(3):175-81. PubMed ID: 22803623 [TBL] [Abstract][Full Text] [Related]
13. Genetic regulation of octane dissimilation plasmid in Pseudomonas. Chakrabarty AM; Chou G; Gunsalus IC Proc Natl Acad Sci U S A; 1973 Apr; 70(4):1137-40. PubMed ID: 4515610 [TBL] [Abstract][Full Text] [Related]
14. The Pseudomonas oleovorans alkane hydroxylase gene. Sequence and expression. Kok M; Oldenhuis R; van der Linden MP; Raatjes P; Kingma J; van Lelyveld PH; Witholt B J Biol Chem; 1989 Apr; 264(10):5435-41. PubMed ID: 2647718 [TBL] [Abstract][Full Text] [Related]
15. Regulation of alkane oxidation in Pseudomonas putida. Grund A; Shapiro J; Fennewald M; Bacha P; Leahy J; Markbreiter K; Nieder M; Toepfer M J Bacteriol; 1975 Aug; 123(2):546-56. PubMed ID: 1150626 [TBL] [Abstract][Full Text] [Related]
16. Measuring mass transfer processes of octane with the help of an alkSalkB::gfp-tagged Escherichia coli. Jaspers MC; Meier C; Zehnder AJ; Harms H; van der Meer JR Environ Microbiol; 2001 Aug; 3(8):512-24. PubMed ID: 11578312 [TBL] [Abstract][Full Text] [Related]
17. Analysis of Pseudomonas putida alkane-degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk genes. van Beilen JB; Panke S; Lucchini S; Franchini AG; Röthlisberger M; Witholt B Microbiology (Reading); 2001 Jun; 147(Pt 6):1621-1630. PubMed ID: 11390693 [TBL] [Abstract][Full Text] [Related]
18. Solubilization of the overexpressed integral membrane protein alkane monooxygenase of the recombinant Escherichia coli W3110[pGEc47]. Peters J; Witholt B Biochim Biophys Acta; 1994 Dec; 1196(2):145-53. PubMed ID: 7841178 [TBL] [Abstract][Full Text] [Related]
19. Expression of an alkane monooxygenase (alkB) gene and methyl tert-butyl ether co-metabolic oxidation in Pseudomonas citronellolis. Bravo AL; Sigala JC; Le Borgne S; Morales M Biotechnol Lett; 2015 Apr; 37(4):807-14. PubMed ID: 25432418 [TBL] [Abstract][Full Text] [Related]
20. Polymerase C1 levels and poly(R-3-hydroxyalkanoate) synthesis in wild-type and recombinant Pseudomonas strains. Kraak MN; Smits TH; Kessler B; Witholt B J Bacteriol; 1997 Aug; 179(16):4985-91. PubMed ID: 9260937 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]