These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 7592602)

  • 1. The N-terminal cytoplasmic tail of the aspartate receptor is not essential in signal transduction of bacterial chemotaxis.
    Chen X; Koshland DE
    J Biol Chem; 1995 Oct; 270(41):24038-42. PubMed ID: 7592602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptation mechanism of the aspartate receptor: electrostatics of the adaptation subdomain play a key role in modulating kinase activity.
    Starrett DJ; Falke JJ
    Biochemistry; 2005 Feb; 44(5):1550-60. PubMed ID: 15683239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Escherichia coli aspartate receptor: sequence specificity of a transmembrane helix studied by hydrophobic-biased random mutagenesis.
    Jeffery CJ; Koshland DE
    Protein Eng; 1999 Oct; 12(10):863-72. PubMed ID: 10556247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutagenic studies of the interaction between the aspartate receptor and methyltransferase from Escherichia coli.
    Shapiro MJ; Koshland DE
    J Biol Chem; 1994 Apr; 269(15):11054-9. PubMed ID: 8157631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lock on/off disulfides identify the transmembrane signaling helix of the aspartate receptor.
    Chervitz SA; Falke JJ
    J Biol Chem; 1995 Oct; 270(41):24043-53. PubMed ID: 7592603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of a conserved alpha-helix in the kinase-docking region of the aspartate receptor by cysteine and disulfide scanning.
    Bass RB; Falke JJ
    J Biol Chem; 1998 Sep; 273(39):25006-14. PubMed ID: 9737956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A piston model for transmembrane signaling of the aspartate receptor.
    Ottemann KM; Xiao W; Shin YK; Koshland DE
    Science; 1999 Sep; 285(5434):1751-4. PubMed ID: 10481014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conserved glycine residues in the cytoplasmic domain of the aspartate receptor play essential roles in kinase coupling and on-off switching.
    Coleman MD; Bass RB; Mehan RS; Falke JJ
    Biochemistry; 2005 May; 44(21):7687-95. PubMed ID: 15909983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attractant- and disulfide-induced conformational changes in the ligand binding domain of the chemotaxis aspartate receptor: a 19F NMR study.
    Danielson MA; Biemann HP; Koshland DE; Falke JJ
    Biochemistry; 1994 May; 33(20):6100-9. PubMed ID: 7910759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Apo structure of the ligand-binding domain of aspartate receptor from Escherichia coli and its comparison with ligand-bound or pseudoligand-bound structures.
    Chi YI; Yokota H; Kim SH
    FEBS Lett; 1997 Sep; 414(2):327-32. PubMed ID: 9315712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and dynamics of transmembrane signaling by the Escherichia coli aspartate receptor.
    Stoddard BL; Bui JD; Koshland DE
    Biochemistry; 1992 Dec; 31(48):11978-83. PubMed ID: 1457398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a site critical for kinase regulation on the central processing unit (CPU) helix of the aspartate receptor.
    Trammell MA; Falke JJ
    Biochemistry; 1999 Jan; 38(1):329-36. PubMed ID: 9890914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methylation of the Escherichia coli chemotaxis receptors: intra- and interdimer mechanisms.
    Le Moual H; Quang T; Koshland DE
    Biochemistry; 1997 Oct; 36(43):13441-8. PubMed ID: 9341238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Signaling domain of the aspartate receptor is a helical hairpin with a localized kinase docking surface: cysteine and disulfide scanning studies.
    Bass RB; Coleman MD; Falke JJ
    Biochemistry; 1999 Jul; 38(29):9317-27. PubMed ID: 10413506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and characterization of the periplasmic domain of the aspartate chemoreceptor.
    Milligan DL; Koshland DE
    J Biol Chem; 1993 Sep; 268(27):19991-7. PubMed ID: 8397194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Receptor interactions through phosphorylation and methylation pathways in bacterial chemotaxis.
    Sanders DA; Koshland DE
    Proc Natl Acad Sci U S A; 1988 Nov; 85(22):8425-9. PubMed ID: 2847160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Converting a transmembrane receptor to a soluble receptor: recognition domain to effector domain signaling after excision of the transmembrane domain.
    Ottemann KM; Koshland DE
    Proc Natl Acad Sci U S A; 1997 Oct; 94(21):11201-4. PubMed ID: 9326586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cysteine and disulfide scanning reveals a regulatory alpha-helix in the cytoplasmic domain of the aspartate receptor.
    Danielson MA; Bass RB; Falke JJ
    J Biol Chem; 1997 Dec; 272(52):32878-88. PubMed ID: 9407066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imitation of Escherichia coli aspartate receptor signaling in engineered dimers of the cytoplasmic domain.
    Cochran AG; Kim PS
    Science; 1996 Feb; 271(5252):1113-6. PubMed ID: 8599087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contributions made by individual methylation sites of the Escherichia coli aspartate receptor to chemotactic behavior.
    Shapiro MJ; Chakrabarti I; Koshland DE
    Proc Natl Acad Sci U S A; 1995 Feb; 92(4):1053-6. PubMed ID: 7862632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.