BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 7592679)

  • 1. A mutant prion protein displays an aberrant membrane association when expressed in cultured cells.
    Lehmann S; Harris DA
    J Biol Chem; 1995 Oct; 270(41):24589-97. PubMed ID: 7592679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variant GPI structure in relation to membrane-associated functions of a murine folate receptor.
    Wang X; Jansen G; Fan J; Kohler WJ; Ross JF; Schornagel J; Ratnam M
    Biochemistry; 1996 Dec; 35(50):16305-12. PubMed ID: 8973205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prion proteins carrying pathogenic mutations are resistant to phospholipase cleavage of their glycolipid anchors.
    Narwa R; Harris DA
    Biochemistry; 1999 Jul; 38(27):8770-7. PubMed ID: 10393552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two mutant prion proteins expressed in cultured cells acquire biochemical properties reminiscent of the scrapie isoform.
    Lehmann S; Harris DA
    Proc Natl Acad Sci U S A; 1996 May; 93(11):5610-4. PubMed ID: 8643624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nerve growth factor-induced differentiation does not alter the biochemical properties of a mutant prion protein expressed in PC12 cells.
    Chiesa R; Harris DA
    J Neurochem; 2000 Jul; 75(1):72-80. PubMed ID: 10854249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycosylphosphatidylinositol Anchor Modification Machinery Deficiency Is Responsible for the Formation of Pro-Prion Protein (PrP) in BxPC-3 Protein and Increases Cancer Cell Motility.
    Yang L; Gao Z; Hu L; Wu G; Yang X; Zhang L; Zhu Y; Wong BS; Xin W; Sy MS; Li C
    J Biol Chem; 2016 Feb; 291(8):3905-17. PubMed ID: 26683373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane topology influences N-glycosylation of the prion protein.
    Walmsley AR; Zeng F; Hooper NM
    EMBO J; 2001 Feb; 20(4):703-12. PubMed ID: 11179215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of glycosylphosphatidylinositol anchor-dependent and -independent prion protein association with model raft membranes on conversion to the protease-resistant isoform.
    Baron GS; Caughey B
    J Biol Chem; 2003 Apr; 278(17):14883-92. PubMed ID: 12594216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prion protein expression in Chinese hamster ovary cells using a glutamine synthetase selection and amplification system.
    Blochberger TC; Cooper C; Peretz D; Tatzelt J; Griffith OH; Baldwin MA; Prusiner SB
    Protein Eng; 1997 Dec; 10(12):1465-73. PubMed ID: 9543009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recombinant human prion protein mutants huPrP D178N/M129 (FFI) and huPrP+9OR (fCJD) reveal proteinase K resistance.
    Gauczynski S; Krasemann S; Bodemer W; Weiss S
    J Cell Sci; 2002 Nov; 115(Pt 21):4025-36. PubMed ID: 12356908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Abnormal properties of prion protein with insertional mutations in different cell types.
    Priola SA; Chesebro B
    J Biol Chem; 1998 May; 273(19):11980-5. PubMed ID: 9565627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteolysis of the carboxyl-terminal GPI signal independent of GPI modification as a mechanism for selective protein secretion.
    Wang J; Shen F; Yan W; Wu M; Ratnam M
    Biochemistry; 1997 Nov; 36(47):14583-92. PubMed ID: 9398177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracellular accumulation of the cellular prion protein after mutagenesis of its Asn-linked glycosylation sites.
    Rogers M; Taraboulos A; Scott M; Groth D; Prusiner SB
    Glycobiology; 1990 Sep; 1(1):101-9. PubMed ID: 1983782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conversion of secretory proteins into membrane proteins by fusing with a glycosylphosphatidylinositol anchor signal of alkaline phosphatase.
    Oda K; Cheng J; Saku T; Takami N; Sohda M; Misumi Y; Ikehara Y; Millán JL
    Biochem J; 1994 Jul; 301 ( Pt 2)(Pt 2):577-83. PubMed ID: 7519012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prion protein with an E200K mutation displays properties similar to those of the cellular isoform PrP(C).
    Rosenmann H; Talmor G; Halimi M; Yanai A; Gabizon R; Meiner Z
    J Neurochem; 2001 Mar; 76(6):1654-62. PubMed ID: 11259483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sphingolipid deficiency induces hypersensitivity of CD14, a glycosyl phosphatidylinositol-anchored protein, to phosphatidylinositol-specific phospholipase C.
    Hanada K; Izawa K; Nishijima M; Akamatsu Y
    J Biol Chem; 1993 Jul; 268(19):13820-3. PubMed ID: 7686144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell-surface expression of an amino-terminal fragment of apolipoprotein B increases lipoprotein lipase binding to cells.
    Pang L; Sivaram P; Goldberg IJ
    J Biol Chem; 1996 Aug; 271(32):19518-23. PubMed ID: 8702644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GPI- and transmembrane-anchored influenza hemagglutinin differ in structure and receptor binding activity.
    Kemble GW; Henis YI; White JM
    J Cell Biol; 1993 Sep; 122(6):1253-65. PubMed ID: 8397215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amino acid conditions near the GPI anchor attachment site of prion protein for the conversion and the GPI anchoring.
    Hizume M; Kobayashi A; Mizusawa H; Kitamoto T
    Biochem Biophys Res Commun; 2010 Jan; 391(4):1681-6. PubMed ID: 20040362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid turnover and impaired cell-surface expression of the human folate receptor in mouse L(tk-) fibroblasts, a cell line defective in glycosylphosphatidylinositol tail synthesis.
    Chung KN; Roberts S; Kim CH; Kirassova M; Trepel J; Elwood PC
    Arch Biochem Biophys; 1995 Sep; 322(1):228-34. PubMed ID: 7574680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.