These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 7592682)
1. Subunits coupling H+ transport and ATP synthesis in the Escherichia coli ATP synthase. Cys-Cys cross-linking of F1 subunit epsilon to the polar loop of F0 subunit c. Zhang Y; Fillingame RH J Biol Chem; 1995 Oct; 270(41):24609-14. PubMed ID: 7592682 [TBL] [Abstract][Full Text] [Related]
2. Defining the domain of binding of F1 subunit epsilon with the polar loop of F0 subunit c in the Escherichia coli ATP synthase. Hermolin J; Dmitriev OY; Zhang Y; Fillingame RH J Biol Chem; 1999 Jun; 274(24):17011-6. PubMed ID: 10358051 [TBL] [Abstract][Full Text] [Related]
3. The stalk region of the Escherichia coli ATP synthase. Tyrosine 205 of the gamma subunit is in the interface between the F1 and F0 parts and can interact with both the epsilon and c oligomer. Watts SD; Tang C; Capaldi RA J Biol Chem; 1996 Nov; 271(45):28341-7. PubMed ID: 8910457 [TBL] [Abstract][Full Text] [Related]
4. Suppressor mutations in F1 subunit epsilon recouple ATP-driven H+ translocation in uncoupled Q42E subunit c mutant of Escherichia coli F1F0 ATP synthase. Zhang Y; Oldenburg M; Fillingame RH J Biol Chem; 1994 Apr; 269(14):10221-4. PubMed ID: 7908291 [TBL] [Abstract][Full Text] [Related]
5. Arginine 41 of subunit c of Escherichia coli H(+)-ATP synthase is essential in binding and coupling of F1 to F0. Fraga D; Hermolin J; Oldenburg M; Miller MJ; Fillingame RH J Biol Chem; 1994 Mar; 269(10):7532-7. PubMed ID: 8125974 [TBL] [Abstract][Full Text] [Related]
6. Characterization of the interface between gamma and epsilon subunits of Escherichia coli F1-ATPase. Tang C; Capaldi RA J Biol Chem; 1996 Feb; 271(6):3018-24. PubMed ID: 8621695 [TBL] [Abstract][Full Text] [Related]
7. Conserved polar loop region of Escherichia coli subunit c of the F1F0 H+-ATPase. Glutamine 42 is not absolutely essential, but substitutions alter binding and coupling of F1 to F0. Fraga D; Fillingame RH J Biol Chem; 1989 Apr; 264(12):6797-803. PubMed ID: 2523384 [TBL] [Abstract][Full Text] [Related]
8. Asymmetry of Escherichia coli F1-ATPase as a function of the interaction of alpha-beta subunit pairs with the gamma and epsilon subunits. Haughton MA; Capaldi RA J Biol Chem; 1995 Sep; 270(35):20568-74. PubMed ID: 7657634 [TBL] [Abstract][Full Text] [Related]
9. Coupling H+ transport and ATP synthesis in F1F0-ATP synthases: glimpses of interacting parts in a dynamic molecular machine. Fillingame RH J Exp Biol; 1997 Jan; 200(Pt 2):217-24. PubMed ID: 9050229 [TBL] [Abstract][Full Text] [Related]
10. Interactions between the F1 and F0 parts in the Escherichia coli ATP synthase. Associations involving the loop region of C subunits. Watts SD; Capaldi RA J Biol Chem; 1997 Jun; 272(24):15065-8. PubMed ID: 9182524 [TBL] [Abstract][Full Text] [Related]
11. Nucleotide-dependent movement of the epsilon subunit between alpha and beta subunits in the Escherichia coli F1F0-type ATPase. Aggeler R; Capaldi RA J Biol Chem; 1996 Jun; 271(23):13888-91. PubMed ID: 8662953 [TBL] [Abstract][Full Text] [Related]
12. Role of the amino terminal region of the epsilon subunit of Escherichia coli H(+)-ATPase (F0F1). Jounouchi M; Takeyama M; Noumi T; Moriyama Y; Maeda M; Futai M Arch Biochem Biophys; 1992 Jan; 292(1):87-94. PubMed ID: 1530778 [TBL] [Abstract][Full Text] [Related]
13. Introduction of reactive cysteine residues in the epsilon subunit of Escherichia coli F1 ATPase, modification of these sites with tetrafluorophenyl azide-maleimides, and examination of changes in the binding of the epsilon subunit when different nucleotides are in catalytic sites. Aggeler R; Chicas-Cruz K; Cai SX; Keana JF; Capaldi RA Biochemistry; 1992 Mar; 31(11):2956-61. PubMed ID: 1532326 [TBL] [Abstract][Full Text] [Related]
14. Domains near ATP gamma phosphate in the catalytic site of H+-ATPase. Model proposed from mutagenesis and inhibitor studies. Iwamoto A; Park MY; Maeda M; Futai M J Biol Chem; 1993 Feb; 268(5):3156-60. PubMed ID: 8428992 [TBL] [Abstract][Full Text] [Related]
15. Changing the ion binding specificity of the Escherichia coli H(+)-transporting ATP synthase by directed mutagenesis of subunit c. Zhang Y; Fillingame RH J Biol Chem; 1995 Jan; 270(1):87-93. PubMed ID: 7814424 [TBL] [Abstract][Full Text] [Related]
16. Effects of mutations of conserved Lys-155 and Thr-156 residues in the phosphate-binding glycine-rich sequence of the F1-ATPase beta subunit of Escherichia coli. Omote H; Maeda M; Futai M J Biol Chem; 1992 Oct; 267(29):20571-6. PubMed ID: 1400377 [TBL] [Abstract][Full Text] [Related]
17. Essential aspartate in subunit c of F1F0 ATP synthase. Effect of position 61 substitutions in helix-2 on function of Asp24 in helix-1. Zhang Y; Fillingame RH J Biol Chem; 1994 Feb; 269(7):5473-9. PubMed ID: 8106529 [TBL] [Abstract][Full Text] [Related]
18. Beta-gamma subunit interaction is required for catalysis by H(+)-ATPase (ATP synthase). Beta subunit amino acid replacements suppress a gamma subunit mutation having a long unrelated carboxyl terminus. Jeanteur-De Beukelaer C; Omote H; Iwamoto-Kihara A; Maeda M; Futai M J Biol Chem; 1995 Sep; 270(39):22850-4. PubMed ID: 7559418 [TBL] [Abstract][Full Text] [Related]
19. The gamma subunit of the Escherichia coli ATP synthase. Mutations in the carboxyl-terminal region restore energy coupling to the amino-terminal mutant gamma Met-23-->Lys. Nakamoto RK; Maeda M; Futai M J Biol Chem; 1993 Jan; 268(2):867-72. PubMed ID: 8419364 [TBL] [Abstract][Full Text] [Related]
20. A mutation in the Escherichia coli F0F1-ATP synthase rotor, gammaE208K, perturbs conformational coupling between transport and catalysis. Ketchum CJ; Nakamoto RK J Biol Chem; 1998 Aug; 273(35):22292-7. PubMed ID: 9712846 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]