These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 7592703)
1. Spermidine-preferential uptake system in Escherichia coli. ATP hydrolysis by PotA protein and its association with membrane. Kashiwagi K; Endo H; Kobayashi H; Takio K; Igarashi K J Biol Chem; 1995 Oct; 270(43):25377-82. PubMed ID: 7592703 [TBL] [Abstract][Full Text] [Related]
2. Functions of potA and potD proteins in spermidine-preferential uptake system in Escherichia coli. Kashiwagi K; Miyamoto S; Nukui E; Kobayashi H; Igarashi K J Biol Chem; 1993 Sep; 268(26):19358-63. PubMed ID: 8366082 [TBL] [Abstract][Full Text] [Related]
3. The ATPase activity and the functional domain of PotA, a component of the sermidine-preferential uptake system in Escherichia coli. Kashiwagi K; Innami A; Zenda R; Tomitori H; Igarashi K J Biol Chem; 2002 Jul; 277(27):24212-9. PubMed ID: 11976340 [TBL] [Abstract][Full Text] [Related]
4. Identification and functions of amino acid residues in PotB and PotC involved in spermidine uptake activity. Higashi K; Sakamaki Y; Herai E; Demizu R; Uemura T; Saroj SD; Zenda R; Terui Y; Nishimura K; Toida T; Kashiwagi K; Igarashi K J Biol Chem; 2010 Dec; 285(50):39061-9. PubMed ID: 20937813 [TBL] [Abstract][Full Text] [Related]
5. Characterization of the structural requirements for assembly and nucleotide binding of an ATP-binding cassette transporter. The maltose transport system of Escherichia coli. Panagiotidis CH; Reyes M; Sievertsen A; Boos W; Shuman HA J Biol Chem; 1993 Nov; 268(31):23685-96. PubMed ID: 8226895 [TBL] [Abstract][Full Text] [Related]
6. Transcriptional inhibition of the operon for the spermidine uptake system by the substrate-binding protein PotD. Antognoni F; Del Duca S; Kuraishi A; Kawabe E; Fukuchi-Shimogori T; Kashiwagi K; Igarashi K J Biol Chem; 1999 Jan; 274(4):1942-8. PubMed ID: 9890949 [TBL] [Abstract][Full Text] [Related]
7. The nucleotide-binding site of HisP, a membrane protein of the histidine permease. Identification of amino acid residues photoaffinity labeled by 8-azido-ATP. Mimura CS; Admon A; Hurt KA; Ames GF J Biol Chem; 1990 Nov; 265(32):19535-42. PubMed ID: 2246240 [TBL] [Abstract][Full Text] [Related]
8. Characteristics of the operon for a putrescine transport system that maps at 19 minutes on the Escherichia coli chromosome. Pistocchi R; Kashiwagi K; Miyamoto S; Nukui E; Sadakata Y; Kobayashi H; Igarashi K J Biol Chem; 1993 Jan; 268(1):146-52. PubMed ID: 8416922 [TBL] [Abstract][Full Text] [Related]
9. Spermidine-preferential uptake system in Escherichia coli. Identification of amino acids involved in polyamine binding in PotD protein. Kashiwagi K; Pistocchi R; Shibuya S; Sugiyama S; Morikawa K; Igarashi K J Biol Chem; 1996 May; 271(21):12205-8. PubMed ID: 8647815 [TBL] [Abstract][Full Text] [Related]
10. Functional reassembly of ATP-dependent xenobiotic transport by the N- and C-terminal domains of RLIP76 and identification of ATP binding sequences. Awasthi S; Cheng JZ; Singhal SS; Pandya U; Sharma R; Singh SV; Zimniak P; Awasthi YC Biochemistry; 2001 Apr; 40(13):4159-68. PubMed ID: 11300797 [TBL] [Abstract][Full Text] [Related]
11. Characterization of KpsT, the ATP-binding component of the ABC-transporter involved with the export of capsular polysialic acid in Escherichia coli K1. Pavelka MS; Hayes SF; Silver RP J Biol Chem; 1994 Aug; 269(31):20149-58. PubMed ID: 8051103 [TBL] [Abstract][Full Text] [Related]
12. [Polyamine transport in Escherichia coli and eukaryotic cells]. Kashiwagi K Yakugaku Zasshi; 1996 Mar; 116(3):175-91. PubMed ID: 8721347 [TBL] [Abstract][Full Text] [Related]
13. Polyamine uptake systems in Escherichia coli. Igarashi K; Ito K; Kashiwagi K Res Microbiol; 2001; 152(3-4):271-8. PubMed ID: 11421274 [TBL] [Abstract][Full Text] [Related]
14. Characterization of a potential catalytic residue, Asp-133, in the high affinity ATP-binding site of Escherichia coli SecA, translocation ATPase. Sato K; Mori H; Yoshida M; Mizushima S J Biol Chem; 1996 Jul; 271(29):17439-44. PubMed ID: 8663354 [TBL] [Abstract][Full Text] [Related]
15. Mutation of a single MalK subunit severely impairs maltose transport activity in Escherichia coli. Davidson AL; Sharma S J Bacteriol; 1997 Sep; 179(17):5458-64. PubMed ID: 9287001 [TBL] [Abstract][Full Text] [Related]
16. Identification of the magnesium-binding domain of the high-affinity ATP-binding site of the Bacillus subtilis and Escherichia coli SecA protein. van der Wolk JP; Klose M; de Wit JG; den Blaauwen T; Freudl R; Driessen AJ J Biol Chem; 1995 Aug; 270(32):18975-82. PubMed ID: 7642557 [TBL] [Abstract][Full Text] [Related]
17. ATP modulates subunit-subunit interactions in an ATP-binding cassette transporter (MalFGK2) determined by site-directed chemical cross-linking. Hunke S; Mourez M; Jehanno M; Dassa E; Schneider E J Biol Chem; 2000 May; 275(20):15526-34. PubMed ID: 10809785 [TBL] [Abstract][Full Text] [Related]
18. A molecular switch in SecA protein couples ATP hydrolysis to protein translocation. Karamanou S; Vrontou E; Sianidis G; Baud C; Roos T; Kuhn A; Politou AS; Economou A Mol Microbiol; 1999 Dec; 34(5):1133-45. PubMed ID: 10594836 [TBL] [Abstract][Full Text] [Related]
19. Biochemical analysis of Escherichia coli selenophosphate synthetase mutants. Lysine 20 is essential for catalytic activity and cysteine 17/19 for 8-azido-ATP derivatization. Kim IY; Veres Z; Stadtman TC J Biol Chem; 1993 Dec; 268(36):27020-5. PubMed ID: 8262938 [TBL] [Abstract][Full Text] [Related]
20. Archaeal binding protein-dependent ABC transporter: molecular and biochemical analysis of the trehalose/maltose transport system of the hyperthermophilic archaeon Thermococcus litoralis. Horlacher R; Xavier KB; Santos H; DiRuggiero J; Kossmann M; Boos W J Bacteriol; 1998 Feb; 180(3):680-9. PubMed ID: 9457875 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]