BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 7592808)

  • 1. Carbon monoxide religation kinetics to hemoglobin S polymers following ligand photolysis.
    Shapiro DB; Esquerra RM; Goldbeck RA; Ballas SK; Mohandas N; Kliger DS
    J Biol Chem; 1995 Nov; 270(44):26078-85. PubMed ID: 7592808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A study of the mechanisms of slow religation to sickle cell hemoglobin polymers following laser photolysis.
    Shapiro DB; Esquerra RM; Goldbeck RA; Ballas SK; Mohandas N; Kliger DS
    J Mol Biol; 1996 Jun; 259(5):947-56. PubMed ID: 8683597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Delay time of hemoglobin S polymerization prevents most cells from sickling in vivo.
    Mozzarelli A; Hofrichter J; Eaton WA
    Science; 1987 Jul; 237(4814):500-6. PubMed ID: 3603036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanosecond absorption study of kinetics associated with carbon monoxide rebinding to hemoglobin S and hemoglobin C following ligand photolysis.
    Shapiro DB; Paquette SJ; Esquerra RM; Che D; Goldbeck RA; Hirsch RE; Mohandas N; Kliger DS
    Biochem Biophys Res Commun; 1994 Nov; 205(1):154-60. PubMed ID: 7999016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for carbon monoxide binding to sickle cell polymers during melting.
    Aroutiounian SK; Louderback JG; Ballas SK; Kim-Shapiro DB
    Biophys Chem; 2001 Jul; 91(2):167-81. PubMed ID: 11429206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature and domain size dependence of sickle cell hemoglobin polymer melting in high concentration phosphate buffer.
    Louderback JG; Aroutiounian SK; Kerr WC; Ballas SK; Kim-Shapiro DB
    Biophys Chem; 1999 Jul; 80(1):21-30. PubMed ID: 10457594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sickle hemoglobin polymer melting in high concentration phosphate buffer.
    Louderback JG; Ballas SK; Kim-Shapiro DB
    Biophys J; 1999 Apr; 76(4):2216-22. PubMed ID: 10096916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sickle hemoglobin fibers: mechanisms of depolymerization.
    Agarwal G; Wang JC; Kwong S; Cohen SM; Ferrone FA; Josephs R; Briehl RW
    J Mol Biol; 2002 Sep; 322(2):395-412. PubMed ID: 12217699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulated formation of polymer domains in sickle hemoglobin.
    Dou Q; Ferrone FA
    Biophys J; 1993 Nov; 65(5):2068-77. PubMed ID: 8298036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-resolved optical spectroscopy and structural dynamics following photodissociation of carbonmonoxyhemoglobin.
    Murray LP; Hofrichter J; Henry ER; Eaton WA
    Biophys Chem; 1988 Feb; 29(1-2):63-76. PubMed ID: 3282562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single cell microspectroscopy reveals that erythrocytes containing hemoglobin S retain a 'memory' of previous sickling cycles.
    Coletta M; Alayash AI; Wilson MT; Benedetti PA; Evangelista V; Brunori M
    FEBS Lett; 1988 Aug; 236(1):127-31. PubMed ID: 3402610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new approach to the treatment of sickle cell anemia.
    Milosz A; Settle W
    Res Commun Chem Pathol Pharmacol; 1975 Sep; 12(1):137-46. PubMed ID: 1188180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of sickle hemoglobin polymerization. I. Studies using temperature-jump and laser photolysis techniques.
    Ferrone FA; Hofrichter J; Eaton WA
    J Mol Biol; 1985 Jun; 183(4):591-610. PubMed ID: 4020872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ligand recombination to the alpha and beta subunits of human hemoglobin.
    Olson JS; Rohlfs RJ; Gibson QH
    J Biol Chem; 1987 Sep; 262(27):12930-8. PubMed ID: 3654596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The kinetics of nucleation and growth of sickle cell hemoglobin fibers.
    Galkin O; Nagel RL; Vekilov PG
    J Mol Biol; 2007 Jan; 365(2):425-39. PubMed ID: 17069853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of the rate and equilibrium constants for oxygen and carbon monoxide binding to R-state human hemoglobin cross-linked between the alpha subunits at lysine 99.
    Vandegriff KD; Le Tellier YC; Winslow RM; Rohlfs RJ; Olson JS
    J Biol Chem; 1991 Sep; 266(26):17049-59. PubMed ID: 1910038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanosecond time-resolved absorption studies of human oxyhemoglobin photolysis intermediates.
    Ghelichkhani E; Goldbeck RA; Lewis JW; Kliger DS
    Biophys J; 1996 Sep; 71(3):1596-604. PubMed ID: 8874033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of liganded hemoglobin S and hemoglobin A on the aggregation of deoxy-hemoglobin S.
    Adachi K; Asakura T
    J Biol Chem; 1982 May; 257(10):5738-44. PubMed ID: 7068616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metastable polymerization of sickle hemoglobin in droplets.
    Aprelev A; Weng W; Zakharov M; Rotter M; Yosmanovich D; Kwong S; Briehl RW; Ferrone FA
    J Mol Biol; 2007 Jun; 369(5):1170-4. PubMed ID: 17493634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of the reaction of carbon monoxide and oxygen with T-state hemoglobin in human red blood cell suspensions studied by dye laser flash photolysis.
    Hasinoff BB
    Physiol Chem Phys; 1982; 14(1):13-7. PubMed ID: 7178241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.