These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 7592808)

  • 21. Kinetics of reactions within single erythrocytes: studies by microspectrophotometry.
    Antonini E; Brunori M; Giardina B; Benedetti PA; Grassi S; Gualtieri P
    Haematologia (Budap); 1982; 15(1):3-15. PubMed ID: 7117941
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetics of ligand binding and quaternary conformational change in the homodimeric hemoglobin from Scapharca inaequivalvis.
    Antonini E; Ascoli F; Brunori M; Chiancone E; Verzili D; Morris RJ; Gibson QH
    J Biol Chem; 1984 Jun; 259(11):6730-8. PubMed ID: 6725269
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Universal metastability of sickle hemoglobin polymerization.
    Weng W; Aprelev A; Briehl RW; Ferrone FA
    J Mol Biol; 2008 Apr; 377(4):1228-35. PubMed ID: 18308336
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanisms of homogeneous nucleation of polymers of sickle cell anemia hemoglobin in deoxy state.
    Galkin O; Vekilov PG
    J Mol Biol; 2004 Feb; 336(1):43-59. PubMed ID: 14741202
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Can a two-state MWC allosteric model explain hemoglobin kinetics?
    Henry ER; Jones CM; Hofrichter J; Eaton WA
    Biochemistry; 1997 May; 36(21):6511-28. PubMed ID: 9174369
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigations of photolysis and rebinding kinetics in myoglobin using proximal ligand replacements.
    Cao W; Ye X; Sjodin T; Christian JF; Demidov AA; Berezhna S; Wang W; Barrick D; Sage JT; Champion PM
    Biochemistry; 2004 Aug; 43(34):11109-17. PubMed ID: 15323570
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinetics of hemoglobin-carbon monoxide reactions measured with a superconducting magnetometer: a new method for fast reactions in solution.
    Philo JS
    Proc Natl Acad Sci U S A; 1977 Jul; 74(7):2620-3. PubMed ID: 268612
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiple T state conformations in a fish hemoglobin. Carbon monoxide binding to hemoglobin of Thunnus thynnus.
    Morris RJ; Neckameyer WS; Gibson QH
    J Biol Chem; 1981 May; 256(9):4598-603. PubMed ID: 7217101
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effects of erythrocyte membranes on the nucleation of sickle hemoglobin.
    Aprelev A; Rotter MA; Etzion Z; Bookchin RM; Briehl RW; Ferrone FA
    Biophys J; 2005 Apr; 88(4):2815-22. PubMed ID: 15653736
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinetic studies on photolysis-induced gelation of sickle cell hemoglobin suggest a new mechanism.
    Ferrone FA; Hofrichter J; Sunshine HR; Eaton WA
    Biophys J; 1980 Oct; 32(1):361-80. PubMed ID: 7248455
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CO binding and valency exchange in asymmetric Hb hybrids.
    Kiger L; Poyart C; Marden MC
    Biochemistry; 1998 Oct; 37(41):14643-50. PubMed ID: 9772193
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intracellular polymerization of sickle hemoglobin: disease severity and therapeutic goals.
    Noguchi CT; Rodgers GP; Schechter AN
    Prog Clin Biol Res; 1987; 240():381-91. PubMed ID: 3615501
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of quaternary structure on the kinetics of conformational changes and nanosecond geminate rebinding of carbon monoxide to hemoglobin.
    Murray LP; Hofrichter J; Henry ER; Ikeda-Saito M; Kitagishi K; Yonetani T; Eaton WA
    Proc Natl Acad Sci U S A; 1988 Apr; 85(7):2151-5. PubMed ID: 3353372
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stereodynamic properties of the cooperative homodimeric Scapharca inaequivalvis hemoglobin studied through optical absorption spectroscopy and ligand rebinding kinetics.
    Boffi A; Verzili D; Chiancone E; Leone M; Cupane A; Militello V; Vitrano E; Cordone L; Yu W; Di Iorio EE
    Biophys J; 1994 Oct; 67(4):1713-23. PubMed ID: 7819503
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ligand binding by the chlorocruorin from Eudistylia vancouverii.
    Gibson QH; Bellelli A; Regan R; Sharma PK; Vinogradov SN
    J Biol Chem; 1992 Jun; 267(17):11977-81. PubMed ID: 1601868
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The growth of sickle hemoglobin polymers.
    Aprelev A; Liu Z; Ferrone FA
    Biophys J; 2011 Aug; 101(4):885-91. PubMed ID: 21843479
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ligand binding to heme proteins: connection between dynamics and function.
    Steinbach PJ; Ansari A; Berendzen J; Braunstein D; Chu K; Cowen BR; Ehrenstein D; Frauenfelder H; Johnson JB; Lamb DC
    Biochemistry; 1991 Apr; 30(16):3988-4001. PubMed ID: 2018767
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Extent of polymerization in partially liganded sickle hemoglobin.
    Chung LL; Magdoff-Fairchild B
    Arch Biochem Biophys; 1978 Aug; 189(2):535-9. PubMed ID: 708064
    [No Abstract]   [Full Text] [Related]  

  • 39. Effect of hemoglobin concentration on nucleation and polymer formation in sickle red blood cells.
    Corbett JD; Mickols WE; Maestre MF
    J Biol Chem; 1995 Feb; 270(6):2708-15. PubMed ID: 7852341
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Monomer diffusion and polymer alignment in domains of sickle hemoglobin.
    Cho MR; Ferrone FA
    Biophys J; 1992 Jul; 63(1):205-14. PubMed ID: 1420868
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.