BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 7592843)

  • 1. Structural and mechanistic studies of galactoside acetyltransferase, the Escherichia coli LacA gene product.
    Lewendon A; Ellis J; Shaw WV
    J Biol Chem; 1995 Nov; 270(44):26326-31. PubMed ID: 7592843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The lac operon galactoside acetyltransferase.
    Roderick SL
    C R Biol; 2005 Jun; 328(6):568-75. PubMed ID: 15950163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The structure and specificity of Escherichia coli maltose acetyltransferase give new insight into the LacA family of acyltransferases.
    Lo Leggio L; Dal Degan F; Poulsen P; Andersen SM; Larsen S
    Biochemistry; 2003 May; 42(18):5225-35. PubMed ID: 12731863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Properties and structure of spermidine acetyltransferase in Escherichia coli.
    Fukuchi J; Kashiwagi K; Takio K; Igarashi K
    J Biol Chem; 1994 Sep; 269(36):22581-5. PubMed ID: 8077207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular characterization of a novel N-acetyltransferase from Chryseobacterium sp.
    Takenaka S; Yoshida K; Tanaka K; Yoshida K
    Appl Environ Microbiol; 2014 Mar; 80(5):1770-6. PubMed ID: 24375143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Streptomyces collinus thiolase with novel acetyl-CoA:acyl carrier protein transacylase activity.
    Lobo S; Florova G; Reynolds KA
    Biochemistry; 2001 Oct; 40(39):11955-64. PubMed ID: 11570897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of the lac operon galactoside acetyltransferase.
    Wang XG; Olsen LR; Roderick SL
    Structure; 2002 Apr; 10(4):581-8. PubMed ID: 11937062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Serine acetyltransferase of Escherichia coli: substrate specificity and feedback control by cysteine.
    Hindson VJ
    Biochem J; 2003 Nov; 375(Pt 3):745-52. PubMed ID: 12940772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RGFGIGS is an amino acid sequence required for acetyl coenzyme A binding and activity of human spermidine/spermine N1acetyltransferase.
    Lu L; Berkey KA; Casero RA
    J Biol Chem; 1996 Aug; 271(31):18920-4. PubMed ID: 8702554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acyltransferase AniI, a Tailoring Enzyme with Broad Substrate Tolerance for High-Level Production of Anisomycin.
    Wang Q; Kong L; Zheng X; Shen J; Wang J; Zhang D; Qiao Y; Wang J; Deng Z; You D
    Appl Environ Microbiol; 2021 Jun; 87(14):e0017221. PubMed ID: 33931417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural insights into the substrate binding mechanism of novel ArgA from Mycobacterium tuberculosis.
    Das U; Singh E; Dharavath S; Tiruttani Subhramanyam UK; Pal RK; Vijayan R; Menon S; Kumar S; Gourinath S; Srinivasan A
    Int J Biol Macromol; 2019 Mar; 125():970-978. PubMed ID: 30576731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acetyl coenzyme A binding by chloramphenicol acetyltransferase. Hydrophobic determinants of recognition and catalysis.
    Day PJ; Shaw WV
    J Biol Chem; 1992 Mar; 267(8):5122-7. PubMed ID: 1544895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic and mutagenic characterization of the chromosomally encoded Salmonella enterica AAC(6')-Iy aminoglycoside N-acetyltransferase.
    Magnet S; Lambert T; Courvalin P; Blanchard JS
    Biochemistry; 2001 Mar; 40(12):3700-9. PubMed ID: 11297438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the mechanism of hamster arylamine N-acetyltransferase 2 acetylation by active site modification, site-directed mutagenesis, and pre-steady state and steady state kinetic studies.
    Wang H; Vath GM; Gleason KJ; Hanna PE; Wagner CR
    Biochemistry; 2004 Jun; 43(25):8234-46. PubMed ID: 15209520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of amino acid residues essential for the yeast N-acetyltransferase Mpr1 activity by site-directed mutagenesis.
    Kotani T; Takagi H
    FEMS Yeast Res; 2008 Jun; 8(4):607-14. PubMed ID: 18373682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the structure and catalytic activity of Legionella pneumophila VipF.
    Young BH; Caldwell TA; McKenzie AM; Kokhan O; Berndsen CE
    Proteins; 2016 Oct; 84(10):1422-30. PubMed ID: 27315603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulating acetyl-CoA binding in the GCN5 family of histone acetyltransferases.
    Langer MR; Fry CJ; Peterson CL; Denu JM
    J Biol Chem; 2002 Jul; 277(30):27337-44. PubMed ID: 11994311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutagenesis analysis of a conserved region involved in acetyl coenzyme A binding in the aminoglycoside 6'-N-acetyltransferase type Ib encoded by plasmid pJHCMW1.
    Pourreza A; Witherspoon M; Fox J; Newmark J; Bui D; Tolmasky ME
    Antimicrob Agents Chemother; 2005 Jul; 49(7):2979-82. PubMed ID: 15980378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamics of an aminoglycoside modifying enzyme with low substrate promiscuity: The aminoglycoside N3 acetyltransferase-VIa.
    Kumar P; Serpersu EH
    Proteins; 2017 Jul; 85(7):1258-1265. PubMed ID: 28316100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate binding to chloramphenicol acetyltransferase: evidence for negative cooperativity from equilibrium and kinetic constants for binary and ternary complexes.
    Ellis J; Bagshaw CR; Shaw WV
    Biochemistry; 1991 Nov; 30(44):10806-13. PubMed ID: 1932000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.