BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 7592918)

  • 1. A novel Ca2+ entry mechanism is turned on during growth arrest induced by Ca2+ pool depletion.
    Ufret-Vincenty CA; Short AD; Alfonso A; Gill DL
    J Biol Chem; 1995 Nov; 270(45):26790-3. PubMed ID: 7592918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endoplasmic reticulum calcium pump expression and control of cell growth.
    Waldron RT; Short AD; Meadows JJ; Ghosh TK; Gill DL
    J Biol Chem; 1994 Apr; 269(16):11927-33. PubMed ID: 8163492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thapsigargin-resistant intracellular calcium pumps. Role in calcium pool function and growth of thapsigargin-resistant cells.
    Waldron RT; Short AD; Gill DL
    J Biol Chem; 1995 May; 270(20):11955-61. PubMed ID: 7744845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ca2+ pools and cell growth: arachidonic acid induces recovery of cells growth-arrested by Ca2+ pool depletion.
    Graber MN; Alfonso A; Gill DL
    J Biol Chem; 1996 Jan; 271(2):883-8. PubMed ID: 8557700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Store-operated Ca2+ entry and coupling to Ca2+ pool depletion in thapsigargin-resistant cells.
    Waldron RT; Short AD; Gill DL
    J Biol Chem; 1997 Mar; 272(10):6440-7. PubMed ID: 9045668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recovery of Ca2+ pools and growth in Ca2+ pool-depleted cells is mediated by specific epoxyeicosatrienoic acids derived from arachidonic acid.
    Graber MN; Alfonso A; Gill DL
    J Biol Chem; 1997 Nov; 272(47):29546-53. PubMed ID: 9368016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of intracellular calcium pools. Selective modification by thapsigargin.
    Bian JH; Ghosh TK; Wang JC; Gill DL
    J Biol Chem; 1991 May; 266(14):8801-6. PubMed ID: 1827436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ca2+ entry in gonadotrophs and alpha T3-1 cells: does store-dependent Ca2+ influx mediate gonadotrophin-releasing hormone action?
    McArdle CA; Forrest-Owen W; Davidson JS; Fowkes R; Bunting R; Mason WT; Poch A; Kratzmeier M
    J Endocrinol; 1996 Apr; 149(1):155-69. PubMed ID: 8676048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular Ca2+ pool content is linked to control of cell growth.
    Short AD; Bian J; Ghosh TK; Waldron RT; Rybak SL; Gill DL
    Proc Natl Acad Sci U S A; 1993 Jun; 90(11):4986-90. PubMed ID: 8389460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endoplasmic reticulum Ca2+ depletion unmasks a caffeine-induced Ca2+ influx in human aortic endothelial cells.
    Corda S; Spurgeon HA; Lakatta EG; Capogrossi MC; Ziegelstein RC
    Circ Res; 1995 Nov; 77(5):927-35. PubMed ID: 7554146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Free cytoplasmic Ca2+ concentration oscillations in thapsigargin-treated parotid acinar cells are caffeine- and ryanodine-sensitive.
    Foskett JK; Wong D
    J Biol Chem; 1991 Aug; 266(22):14535-8. PubMed ID: 1830587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sodium-calcium exchange and store-dependent calcium influx in transfected chinese hamster ovary cells expressing the bovine cardiac sodium-calcium exchanger. Acceleration of exchange activity in thapsigargin-treated cells.
    Chernaya G; Vázquez M; Reeves JP
    J Biol Chem; 1996 Mar; 271(10):5378-85. PubMed ID: 8621391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of the dihydropyridine receptor and internal Ca2+ stores in myoblast fusion.
    Seigneurin-Venin S; Parrish E; Marty I; Rieger F; Romey G; Villaz M; Garcia L
    Exp Cell Res; 1996 Mar; 223(2):301-7. PubMed ID: 8601407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Release and sequestration of calcium by ryanodine-sensitive stores in rat hippocampal neurones.
    Garaschuk O; Yaari Y; Konnerth A
    J Physiol; 1997 Jul; 502 ( Pt 1)(Pt 1):13-30. PubMed ID: 9234194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of mechanical stress-induced Ca(2+)-mobilization sensitized by lysophosphatidic acid in cultured smooth muscle cells.
    Ohata H; Aizawa H; Momose K
    Life Sci; 1996; 58(24):2217-23. PubMed ID: 8649208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Agonist-activated, ryanodine-sensitive, IP3-insensitive Ca2+ release channels in longitudinal muscle of intestine.
    Kuemmerle JF; Murthy KS; Makhlouf GM
    Am J Physiol; 1994 May; 266(5 Pt 1):C1421-31. PubMed ID: 7515567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Persistent intracellular calcium pool depletion by thapsigargin and its influence on cell growth.
    Ghosh TK; Bian JH; Short AD; Rybak SL; Gill DL
    J Biol Chem; 1991 Dec; 266(36):24690-7. PubMed ID: 1761564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms through which PDGF alters intracellular calcium levels in U-1242 MG human glioma cells.
    Saqr HE; Guan Z; Yates AJ; Stokes BT
    Neurochem Int; 1999 Dec; 35(6):411-22. PubMed ID: 10524708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of evoked contractions in rat arteries by ryanodine, thapsigargin, and cyclopiazonic acid.
    Shima H; Blaustein MP
    Circ Res; 1992 May; 70(5):968-77. PubMed ID: 1533181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissociation of intracellular Ca2+ release and Ca2+ entry response to 5-hydroxytryptamine in cultured canine tracheal smooth muscle cells.
    Yang CM
    Cell Signal; 1998 Nov; 10(10):735-42. PubMed ID: 9884025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.