BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 7592942)

  • 1. Both P-glycoprotein nucleotide-binding sites are catalytically active.
    Urbatsch IL; Sankaran B; Bhagat S; Senior AE
    J Biol Chem; 1995 Nov; 270(45):26956-61. PubMed ID: 7592942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. P-glycoprotein is stably inhibited by vanadate-induced trapping of nucleotide at a single catalytic site.
    Urbatsch IL; Sankaran B; Weber J; Senior AE
    J Biol Chem; 1995 Aug; 270(33):19383-90. PubMed ID: 7642618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of P-glycoprotein ATPase activity by procedures involving trapping of nucleotide in catalytic sites.
    Sankaran B; Bhagat S; Senior AE
    Arch Biochem Biophys; 1997 May; 341(1):160-9. PubMed ID: 9143365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutations in either nucleotide-binding site of P-glycoprotein (Mdr3) prevent vanadate trapping of nucleotide at both sites.
    Urbatsch IL; Beaudet L; Carrier I; Gros P
    Biochemistry; 1998 Mar; 37(13):4592-602. PubMed ID: 9521779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functionally similar vanadate-induced 8-azidoadenosine 5'-[alpha-(32)P]Diphosphate-trapped transition state intermediates of human P-glycoprotin are generated in the absence and presence of ATP hydrolysis.
    Sauna ZE; Smith MM; Muller M; Ambudkar SV
    J Biol Chem; 2001 Jun; 276(24):21199-208. PubMed ID: 11287418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of modulators on the ATPase activity and vanadate nucleotide trapping of human P-glycoprotein.
    Shepard RL; Winter MA; Hsaio SC; Pearce HL; Beck WT; Dantzig AH
    Biochem Pharmacol; 1998 Sep; 56(6):719-27. PubMed ID: 9751076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic mechanism of P-glycoprotein.
    Senior AE
    Acta Physiol Scand Suppl; 1998 Aug; 643():213-8. PubMed ID: 9789563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation between steady-state ATP hydrolysis and vanadate-induced ADP trapping in Human P-glycoprotein. Evidence for ADP release as the rate-limiting step in the catalytic cycle and its modulation by substrates.
    Kerr KM; Sauna ZE; Ambudkar SV
    J Biol Chem; 2001 Mar; 276(12):8657-64. PubMed ID: 11121420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleotide-induced conformational changes in P-glycoprotein and in nucleotide binding site mutants monitored by trypsin sensitivity.
    Julien M; Gros P
    Biochemistry; 2000 Apr; 39(15):4559-68. PubMed ID: 10758006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Allosteric modulation bypasses the requirement for ATP hydrolysis in regenerating low affinity transition state conformation of human P-glycoprotein.
    Maki N; Moitra K; Ghosh P; Dey S
    J Biol Chem; 2006 Apr; 281(16):10769-77. PubMed ID: 16505485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. P-glycoprotein shows strong catalytic cooperativity between the two nucleotide sites.
    Senior AE; Bhagat S
    Biochemistry; 1998 Jan; 37(3):831-6. PubMed ID: 9454572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drug binding and nucleotide hydrolyzability are essential requirements in the vanadate-induced inhibition of the human P-glycoprotein ATPase.
    Rao US
    Biochemistry; 1998 Oct; 37(42):14981-8. PubMed ID: 9778376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the catalytic cycle of ATP hydrolysis by human P-glycoprotein. The two ATP hydrolysis events in a single catalytic cycle are kinetically similar but affect different functional outcomes.
    Sauna ZE; Ambudkar SV
    J Biol Chem; 2001 Apr; 276(15):11653-61. PubMed ID: 11154703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of P-glycoprotein ATPase activity by beryllium fluoride.
    Sankaran B; Bhagat S; Senior AE
    Biochemistry; 1997 Jun; 36(22):6847-53. PubMed ID: 9184168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for the vectorial nature of drug (substrate)-stimulated ATP hydrolysis by human P-glycoprotein.
    Sauna ZE; Smith MM; Müller M; Ambudkar SV
    J Biol Chem; 2001 Sep; 276(36):33301-4. PubMed ID: 11451943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for a requirement for ATP hydrolysis at two distinct steps during a single turnover of the catalytic cycle of human P-glycoprotein.
    Sauna ZE; Ambudkar SV
    Proc Natl Acad Sci U S A; 2000 Mar; 97(6):2515-20. PubMed ID: 10716986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ATP hydrolysis by multidrug-resistance protein from Chinese hamster ovary cells.
    Senior AE; al-Shawi MK; Urbatsch IL
    J Bioenerg Biomembr; 1995 Feb; 27(1):31-6. PubMed ID: 7629049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Both ATP sites of human P-glycoprotein are essential but not symmetric.
    Hrycyna CA; Ramachandra M; Germann UA; Cheng PW; Pastan I; Gottesman MM
    Biochemistry; 1999 Oct; 38(42):13887-99. PubMed ID: 10529234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutational analysis of conserved carboxylate residues in the nucleotide binding sites of P-glycoprotein.
    Urbatsch IL; Julien M; Carrier I; Rousseau ME; Cayrol R; Gros P
    Biochemistry; 2000 Nov; 39(46):14138-49. PubMed ID: 11087362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the ATPase activity of purified Chinese hamster P-glycoprotein.
    Urbatsch IL; al-Shawi MK; Senior AE
    Biochemistry; 1994 Jun; 33(23):7069-76. PubMed ID: 7911680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.