These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
78 related articles for article (PubMed ID: 7593042)
1. A transmission electron microscopy examination of the interface between osteoblasts and metal biomaterials. Garvey BT; Bizios R J Biomed Mater Res; 1995 Aug; 29(8):987-92. PubMed ID: 7593042 [TBL] [Abstract][Full Text] [Related]
2. Ultrastructural characterization and immunolocalization of osteopontin in rat calvarial osteoblast primary cultures. Nanci A; Zalzal S; Gotoh Y; McKee MD Microsc Res Tech; 1996 Feb; 33(2):214-31. PubMed ID: 8845520 [TBL] [Abstract][Full Text] [Related]
3. Ultrastructural in vitro characterization of a porous hydroxyapatite/bone cell interface. Holden CM; Bernard GW J Oral Implantol; 1990; 16(2):86-95. PubMed ID: 1963643 [TBL] [Abstract][Full Text] [Related]
4. Electrostatic interactions as a predictor for osteoblast attachment to biomaterials. Smith IO; Baumann MJ; McCabe LR J Biomed Mater Res A; 2004 Sep; 70(3):436-41. PubMed ID: 15293317 [TBL] [Abstract][Full Text] [Related]
5. The bone-titanium interface in vitro. Davies JE; Lowenberg B; Shiga A J Biomed Mater Res; 1990 Oct; 24(10):1289-306. PubMed ID: 2283350 [TBL] [Abstract][Full Text] [Related]
6. Correlative microscopic investigation of the interface between titanium alloy and the osteoblast-osteoblast matrix using mineralizing cultures of primary fetal bovine mandibular osteoblasts. Yliheikkilä PK; Felton DA; Whitson SW; Ambrose WW; Uoshima K; Cooper LF Int J Oral Maxillofac Implants; 1995; 10(6):655-65. PubMed ID: 8530168 [TBL] [Abstract][Full Text] [Related]
7. Osteoblasts engulf apoptotic bodies during alveolar bone formation in the rat maxilla. Cerri PS Anat Rec A Discov Mol Cell Evol Biol; 2005 Sep; 286(1):833-40. PubMed ID: 16047382 [TBL] [Abstract][Full Text] [Related]
8. Patch test reactivity to a cobalt-chromium-molybdenum alloy and stainless steel in metal-allergic patients in correlation to the metal ion release. Summer B; Fink U; Zeller R; Rueff F; Maier S; Roider G; Thomas P Contact Dermatitis; 2007 Jul; 57(1):35-9. PubMed ID: 17577355 [TBL] [Abstract][Full Text] [Related]
9. Cell and matrix reactions at titanium implants in surgically prepared rat tibiae. Masuda T; Salvi GE; Offenbacher S; Felton DA; Cooper LF Int J Oral Maxillofac Implants; 1997; 12(4):472-85. PubMed ID: 9274076 [TBL] [Abstract][Full Text] [Related]
10. Invitro study of adherent mandibular osteoblast-like cells on carrier materials. Turhani D; Weissenböck M; Watzinger E; Yerit K; Cvikl B; Ewers R; Thurnher D Int J Oral Maxillofac Surg; 2005 Jul; 34(5):543-50. PubMed ID: 16053876 [TBL] [Abstract][Full Text] [Related]
11. Extracellular matrix production by osteoblasts on bioactive substrata in vitro. Davies JE; Matsuda T Scanning Microsc; 1988 Sep; 2(3):1445-52. PubMed ID: 2849201 [TBL] [Abstract][Full Text] [Related]
12. Histological and biochemical evaluation of osteoblasts cultured on bioactive glass, hydroxylapatite, titanium alloy, and stainless steel. Vrouwenvelder WC; Groot CG; de Groot K J Biomed Mater Res; 1993 Apr; 27(4):465-75. PubMed ID: 8385144 [TBL] [Abstract][Full Text] [Related]
13. Osteoblast-like cells complete osteoclastic bone resorption and form new mineralized bone matrix in vitro. Mulari MT; Qu Q; Härkönen PL; Väänänen HK Calcif Tissue Int; 2004 Sep; 75(3):253-61. PubMed ID: 15148559 [TBL] [Abstract][Full Text] [Related]
14. Polishing and coating carbon fiber-reinforced carbon composites with a carbon-titanium layer enhances adhesion and growth of osteoblast-like MG63 cells and vascular smooth muscle cells in vitro. Bacáková L; Starý V; Kofronová O; Lisá V J Biomed Mater Res; 2001 Mar; 54(4):567-78. PubMed ID: 11426603 [TBL] [Abstract][Full Text] [Related]
15. Flow perfusion culture of marrow stromal osteoblasts in titanium fiber mesh. van den Dolder J; Bancroft GN; Sikavitsas VI; Spauwen PH; Jansen JA; Mikos AG J Biomed Mater Res A; 2003 Feb; 64(2):235-41. PubMed ID: 12522809 [TBL] [Abstract][Full Text] [Related]
16. Effects of bone morphogenetic protein-7 stimulation on osteoblasts cultured on different biomaterials. Açil Y; Springer IN; Broek V; Terheyden H; Jepsen S J Cell Biochem; 2002; 86(1):90-8. PubMed ID: 12112019 [TBL] [Abstract][Full Text] [Related]
17. A scanning electron microscopy study of human osteoblast morphology on five orthopedic metals. Schmidt C; Kaspar D; Sarkar MR; Claes LE; Ignatius AA J Biomed Mater Res; 2002; 63(3):252-61. PubMed ID: 12115756 [TBL] [Abstract][Full Text] [Related]
18. Nanoapatite and organoapatite implants in bone: histology and ultrastructure of the interface. Müller-Mai CM; Stupp SI; Voigt C; Gross U J Biomed Mater Res; 1995 Jan; 29(1):9-18. PubMed ID: 7713964 [TBL] [Abstract][Full Text] [Related]
19. Surface composition of orthopaedic implant metals regulates cell attachment, spreading, and cytoskeletal organization of primary human osteoblasts in vitro. Sinha RK; Morris F; Shah SA; Tuan RS Clin Orthop Relat Res; 1994 Aug; (305):258-72. PubMed ID: 8050238 [TBL] [Abstract][Full Text] [Related]
20. Ultrastructure of the interface between cultured osteoblasts and surface-modified polymer substrates. Yamamoto M; Kato K; Ikada Y J Biomed Mater Res; 1997 Oct; 37(1):29-36. PubMed ID: 9335346 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]