These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 7593924)

  • 1. The origin of periodicity in the spectrum of evoked otoacoustic emissions.
    Zweig G; Shera CA
    J Acoust Soc Am; 1995 Oct; 98(4):2018-47. PubMed ID: 7593924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noninvasive measurement of the cochlear traveling-wave ratio.
    Shera CA; Zweig G
    J Acoust Soc Am; 1993 Jun; 93(6):3333-52. PubMed ID: 8326061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coherent reflection in a two-dimensional cochlea: Short-wave versus long-wave scattering in the generation of reflection-source otoacoustic emissions.
    Shera CA; Tubis A; Talmadge CL
    J Acoust Soc Am; 2005 Jul; 118(1):287-313. PubMed ID: 16119350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electromotile hearing: evidence from basilar membrane motion and otoacoustic emissions.
    Nuttall AL; Ren T
    Hear Res; 1995 Dec; 92(1-2):170-7. PubMed ID: 8647740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How does the inner ear generate distortion product otoacoustic emissions?. Results from a realistic model of the human cochlea.
    Vetesnik A; Nobili R; Gummer A
    ORL J Otorhinolaryngol Relat Spec; 2006; 68(6):347-52. PubMed ID: 17065828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Testing coherent reflection in chinchilla: Auditory-nerve responses predict stimulus-frequency emissions.
    Shera CA; Tubis A; Talmadge CL
    J Acoust Soc Am; 2008 Jul; 124(1):381-95. PubMed ID: 18646984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Otoacoustic emissions from residual oscillations of the cochlear basilar membrane in a human ear model.
    Nobili R; Vetesnik A; Turicchia L; Mammano F
    J Assoc Res Otolaryngol; 2003 Dec; 4(4):478-94. PubMed ID: 14716508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of low-frequency biasing on otoacoustic and neural measures suggest that stimulus-frequency otoacoustic emissions originate near the peak region of the traveling wave.
    Lichtenhan JT
    J Assoc Res Otolaryngol; 2012 Feb; 13(1):17-28. PubMed ID: 22002610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast reverse propagation of sound in the living cochlea.
    He W; Fridberger A; Porsov E; Ren T
    Biophys J; 2010 Jun; 98(11):2497-505. PubMed ID: 20513393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reflection-Source Emissions Evoked with Clicks and Frequency Sweeps: Comparisons Across Levels.
    Charaziak KK; Shera CA
    J Assoc Res Otolaryngol; 2021 Dec; 22(6):641-658. PubMed ID: 34606020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Otoacoustic emissions reveal the micromechanical role of organ-of-Corti cytoarchitecture in cochlear amplification.
    Shera CA; Altoè A
    Proc Natl Acad Sci U S A; 2023 Oct; 120(41):e2305921120. PubMed ID: 37796989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Delays of stimulus-frequency otoacoustic emissions and cochlear vibrations contradict the theory of coherent reflection filtering.
    Siegel JH; Cerka AJ; Recio-Spinoso A; Temchin AN; van Dijk P; Ruggero MA
    J Acoust Soc Am; 2005 Oct; 118(4):2434-43. PubMed ID: 16266165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous Intracochlear Pressure Measurements from Two Cochlear Locations: Propagation of Distortion Products in Gerbil.
    Dong W
    J Assoc Res Otolaryngol; 2017 Apr; 18(2):209-225. PubMed ID: 27909837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison between otoacoustic and auditory brainstem response latencies supports slow backward propagation of otoacoustic emissions.
    Moleti A; Sisto R
    J Acoust Soc Am; 2008 Mar; 123(3):1495-503. PubMed ID: 18345838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Basilar membrane vibration is not involved in the reverse propagation of otoacoustic emissions.
    He W; Ren T
    Sci Rep; 2013; 3():1874. PubMed ID: 23695199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs.
    Shera CA; Guinan JJ
    J Acoust Soc Am; 1999 Feb; 105(2 Pt 1):782-98. PubMed ID: 9972564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimulus Frequency Otoacoustic Emission Delays and Generating Mechanisms in Guinea Pigs, Chinchillas, and Simulations.
    Berezina-Greene MA; Guinan JJ
    J Assoc Res Otolaryngol; 2015 Dec; 16(6):679-94. PubMed ID: 26373935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydromechanical Structure of the Cochlea Supports the Backward Traveling Wave in the Cochlea
    Chen F; Zha D; Yang X; Hubbard A; Nuttall A
    Neural Plast; 2018; 2018():7502648. PubMed ID: 30123255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Basilar-membrane interference patterns from multiple internal reflection of cochlear traveling waves.
    Shera CA; Cooper NP
    J Acoust Soc Am; 2013 Apr; 133(4):2224-39. PubMed ID: 23556591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direction of wave propagation in the cochlea for internally excited basilar membrane.
    Li Y; Grosh K
    J Acoust Soc Am; 2012 Jun; 131(6):4710-21. PubMed ID: 22712944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.