These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 7595546)

  • 1. Effects of calcium channel antagonists on calcium entry and glutamate release from cultured rat cerebellar granule cells.
    Graham ME; Burgoyne RD
    J Neurochem; 1995 Dec; 65(6):2517-24. PubMed ID: 7595546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of invertebrate peptide toxins to establish Ca2+ channel identity of CA3-CA1 neurotransmission in rat hippocampal slices.
    Nooney JM; Lodge D
    Eur J Pharmacol; 1996 Jun; 306(1-3):41-50. PubMed ID: 8813613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The development of Ca2+ channel responses and their coupling to exocytosis in cultured cerebellar granule cells.
    Harrold J; Ritchie J; Nicholls D; Smith W; Bowman D; Pocock J
    Neuroscience; 1997 Apr; 77(3):683-94. PubMed ID: 9070745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mu-opioid and GABA(B) receptors modulate different types of Ca2+ currents in rat nodose ganglion neurons.
    Rusin KI; Moises HC
    Neuroscience; 1998 Aug; 85(3):939-56. PubMed ID: 9639286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pharmacological characterisation of voltage-sensitive calcium channels and neurotransmitter release from mouse cerebellar granule cells in culture.
    Varming T; Christopherson P; Schousboe A; Drejer J
    J Neurosci Res; 1997 Apr; 48(1):43-52. PubMed ID: 9086180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The involvement of multiple calcium channel sub-types in glutamate release from cerebellar granule cells and its modulation by GABAB receptor activation.
    Huston E; Cullen GP; Burley JR; Dolphin AC
    Neuroscience; 1995 Sep; 68(2):465-78. PubMed ID: 7477957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of N-, P- and Q-type neuronal calcium channel antagonists on mammalian peripheral neurotransmission.
    Wright CE; Angus JA
    Br J Pharmacol; 1996 Sep; 119(1):49-56. PubMed ID: 8872356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Block of non-L-, non-N-type Ca2+ channels in rat insulinoma RINm5F cells by omega-agatoxin IVA and omega-conotoxin MVIIC.
    Magnelli V; Pollo A; Sher E; Carbone E
    Pflugers Arch; 1995 Apr; 429(6):762-71. PubMed ID: 7603830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple types of Ca2+ channels in mouse motor nerve terminals.
    Lin MJ; Lin-Shiau SY
    Eur J Neurosci; 1997 Apr; 9(4):817-23. PubMed ID: 9153589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of glutamate release by calcium channels and kappa-opioid receptors in rodent and primate striatum.
    Hill MP; Brotchie JM
    Br J Pharmacol; 1999 May; 127(1):275-83. PubMed ID: 10369483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Presynaptic modulation of glutamate release targets different calcium channels in rat cerebrocortical nerve terminals.
    Vázquez E; Sánchez-Prieto J
    Eur J Neurosci; 1997 Oct; 9(10):2009-18. PubMed ID: 9421162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct effects of omega-toxins and various groups of Ca(2+)-entry inhibitors on nicotinic acetylcholine receptor and Ca2+ channels of chromaffin cells.
    Villarroya M; De la Fuente MT; López MG; Gandía L; García AG
    Eur J Pharmacol; 1997 Feb; 320(2-3):249-57. PubMed ID: 9059861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increase of the intracellular Ca2+ concentration mediated by transport of glutamate into rat hippocampal synaptosomes: characterization of the activated voltage sensitive Ca2+ channels.
    Malva JO; Ambrósio AF; Carvalho AP; Carvalho CM
    Neurochem Int; 1998 Jan; 32(1):7-16. PubMed ID: 9460696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separation of calcium channel current components in mouse chromaffin cells superfused with low- and high-barium solutions.
    Hernández-Guijo JM; de Pascual R; García AG; Gandía L
    Pflugers Arch; 1998 Jun; 436(1):75-82. PubMed ID: 9560449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A role for Q type Ca2+ channels in neurotransmission in the rat urinary bladder.
    Frew R; Lundy PM
    Br J Pharmacol; 1995 Sep; 116(1):1595-8. PubMed ID: 8564224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pharmacological characterization of presynaptic calcium channels using subsecond biochemical measurements of synaptosomal neurosecretion.
    Turner TJ; Dunlap K
    Neuropharmacology; 1995 Nov; 34(11):1469-78. PubMed ID: 8606794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. mu-Opioid receptor activation reduces multiple components of high-threshold calcium current in rat sensory neurons.
    Rusin KI; Moises HC
    J Neurosci; 1995 Jun; 15(6):4315-27. PubMed ID: 7540671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pharmacological dissection of multiple types of Ca2+ channel currents in rat cerebellar granule neurons.
    Randall A; Tsien RW
    J Neurosci; 1995 Apr; 15(4):2995-3012. PubMed ID: 7722641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple subtypes of voltage-gated calcium channel mediate transmitter release from parasympathetic neurons in the mouse bladder.
    Waterman SA
    J Neurosci; 1996 Jul; 16(13):4155-61. PubMed ID: 8753877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. R- and L-type Ca2+ channels are insensitive to eliprodil in rat cultured cerebellar granule neurons.
    Biton B; Godet D; Granger P; Avenet P
    Eur J Pharmacol; 1997 Apr; 323(2-3):277-81. PubMed ID: 9128850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.