These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 7595572)
21. The polymorphism of acetylcholinesterase: post-translational processing, quaternary associations and localization. Massoulié J; Anselmet A; Bon S; Krejci E; Legay C; Morel N; Simon S Chem Biol Interact; 1999 May; 119-120():29-42. PubMed ID: 10421436 [TBL] [Abstract][Full Text] [Related]
22. The membrane form of acetylcholinesterase from rat brain contains a 20 kDa hydrophobic anchor. Boschetti N; Liao J; Brodbeck U Neurochem Res; 1994 Mar; 19(3):359-65. PubMed ID: 8177377 [TBL] [Abstract][Full Text] [Related]
23. Subunit association and glycosylation of acetylcholinesterase from monkey brain. Liao J; Nørgaard-Pedersen B; Brodbeck U J Neurochem; 1993 Sep; 61(3):1127-34. PubMed ID: 8360678 [TBL] [Abstract][Full Text] [Related]
24. Trimerization domain of the collagen tail of acetylcholinesterase. Bon S; Ayon A; Leroy J; Massoulié J Neurochem Res; 2003 Apr; 28(3-4):523-35. PubMed ID: 12675141 [TBL] [Abstract][Full Text] [Related]
25. Influenza virus M2 integral membrane protein is a homotetramer stabilized by formation of disulfide bonds. Holsinger LJ; Lamb RA Virology; 1991 Jul; 183(1):32-43. PubMed ID: 2053285 [TBL] [Abstract][Full Text] [Related]
26. The carboxyl-terminal 90 residues of porcine submaxillary mucin are sufficient for forming disulfide-bonded dimers. Perez-Vilar J; Hill RL J Biol Chem; 1998 Mar; 273(12):6982-8. PubMed ID: 9507005 [TBL] [Abstract][Full Text] [Related]
27. The conformational stability of a non-covalent dimer of a platelet-derived growth factor-B mutant lacking the two cysteines involved in interchain disulfide bonds. Prestrelski SJ; Arakawa T; Duker K; Kenney WC; Narhi LO Int J Pept Protein Res; 1994 Oct; 44(4):357-63. PubMed ID: 7875938 [TBL] [Abstract][Full Text] [Related]
28. Effect of human acetylcholinesterase subunit assembly on its circulatory residence. Chitlaru T; Kronman C; Velan B; Shafferman A Biochem J; 2001 Mar; 354(Pt 3):613-25. PubMed ID: 11237866 [TBL] [Abstract][Full Text] [Related]
29. Cysteine mutations in the MAM domain result in monomeric meprin and alter stability and activity of the proteinase. Marchand P; Volkmann M; Bond JS J Biol Chem; 1996 Sep; 271(39):24236-41. PubMed ID: 8798668 [TBL] [Abstract][Full Text] [Related]
30. Residues important for folding and dimerisation of recombinant Torpedo californica acetylcholinesterase. Bucht G; Häggström B; Radić Z; Osterman A; Hjalmarsson K Biochim Biophys Acta; 1994 Dec; 1209(2):265-73. PubMed ID: 7811701 [TBL] [Abstract][Full Text] [Related]
31. Monoclonal antibodies against brain acetylcholinesterases which recognize the subunits bearing the hydrophobic anchor. Liao J; Mortensen V; Nørgaard-Pedersen B; Koch C; Brodbeck U Eur J Biochem; 1993 Jul; 215(2):333-40. PubMed ID: 7688303 [TBL] [Abstract][Full Text] [Related]
32. Acetylcholinesterase H and T dimers are associated through the same contact. Mutations at this interface interfere with the C-terminal T peptide, inducing degradation rather than secretion. Morel N; Leroy J; Ayon A; Massoulié J; Bon S J Biol Chem; 2001 Oct; 276(40):37379-89. PubMed ID: 11443120 [TBL] [Abstract][Full Text] [Related]
33. Natural monomeric form of fetal bovine serum acetylcholinesterase lacks the C-terminal tetramerization domain. Saxena A; Hur RS; Luo C; Doctor BP Biochemistry; 2003 Dec; 42(51):15292-9. PubMed ID: 14690439 [TBL] [Abstract][Full Text] [Related]
34. Construction and characterization of secreted and chimeric transmembrane forms of Drosophila acetylcholinesterase: a large truncation of the C-terminal signal peptide does not eliminate glycoinositol phospholipid anchoring. Incardona JP; Rosenberry TL Mol Biol Cell; 1996 Apr; 7(4):595-611. PubMed ID: 8730102 [TBL] [Abstract][Full Text] [Related]
35. Tetramerization domain of human butyrylcholinesterase is at the C-terminus. Blong RM; Bedows E; Lockridge O Biochem J; 1997 Nov; 327 ( Pt 3)(Pt 3):747-57. PubMed ID: 9581552 [TBL] [Abstract][Full Text] [Related]
36. Intrachain disulfide bond in the core hinge region of human IgG4. Bloom JW; Madanat MS; Marriott D; Wong T; Chan SY Protein Sci; 1997 Feb; 6(2):407-15. PubMed ID: 9041643 [TBL] [Abstract][Full Text] [Related]
37. Characterization of a tetrameric G4 form of acetylcholinesterase from bovine brain: a comparison with the dimeric G2 form of the electric organ. Fuentes ME; Inestrosa NC Mol Cell Biochem; 1988 May; 81(1):53-64. PubMed ID: 3173345 [TBL] [Abstract][Full Text] [Related]
38. Selective enhancement of the activity of C-terminally truncated, but not intact, acetylcholinesterase. Zimmermann M; Grösgen S; Westwell MS; Greenfield SA J Neurochem; 2008 Jan; 104(1):221-32. PubMed ID: 17986217 [TBL] [Abstract][Full Text] [Related]
39. Site-directed mutagenesis of conserved cysteine residues in porcine membrane dipeptidase. Cys 361 alone is involved in disulfide-linked dimerization. Keynan S; Habgood NT; Hooper NM; Turner AJ Biochemistry; 1996 Sep; 35(38):12511-7. PubMed ID: 8823187 [TBL] [Abstract][Full Text] [Related]
40. Location of disulfide bonds within the sequence of human serum cholinesterase. Lockridge O; Adkins S; La Du BN J Biol Chem; 1987 Sep; 262(27):12945-52. PubMed ID: 3115973 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]