These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 7595603)

  • 1. Effect of beta-endorphin and alpha-melanotropin on muscle wasting in mice.
    Smith ME; Hughes S
    J Neurol Sci; 1995 May; 129 Suppl():127-30. PubMed ID: 7595603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beta-endorphin decreases fatigue and increases glucose uptake independently in normal and dystrophic mice.
    Khan S; Evans AA; Hughes S; Smith ME
    Muscle Nerve; 2005 Apr; 31(4):481-6. PubMed ID: 15704144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of nerve section on beta-endorphin and alpha-melanotropin immunoreactivity in motor nerves of normal and dystrophic mice.
    Hughes S; Smith ME
    Neurosci Lett; 1988 Sep; 92(1):1-7. PubMed ID: 2847088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beta-endorphin and corticotropin immunoreactivity and specific binding in the neuromuscular system of obese-diabetic mice.
    Hughes S; Smith ME; Bailey CJ
    Neuroscience; 1992; 48(2):463-8. PubMed ID: 1318515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EDL and soleus muscles of the C57BL6J/dy2j laminin-alpha 2-deficient dystrophic mouse are not vulnerable to eccentric contractions.
    Head SI; Bakker AJ; Liangas G
    Exp Physiol; 2004 Sep; 89(5):531-9. PubMed ID: 15184359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low dose formoterol administration improves muscle function in dystrophic mdx mice without increasing fatigue.
    Harcourt LJ; Schertzer JD; Ryall JG; Lynch GS
    Neuromuscul Disord; 2007 Jan; 17(1):47-55. PubMed ID: 17134898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Opioid receptors in skeletal muscle of normal and dystrophic mice.
    Hughes S; Smith ME
    Neurosci Lett; 1990 Aug; 116(1-2):29-33. PubMed ID: 2175405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Power output of fast and slow skeletal muscles of mdx (dystrophic) and control mice after clenbuterol treatment.
    Lynch GS; Hinkle RT; Faulkner JA
    Exp Physiol; 2000 May; 85(3):295-9. PubMed ID: 10825417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The dystrophic murine skeletal muscle cell plasma membrane is structurally intact but "leaky" to creatine phosphokinase. A freeze-fracture analysis.
    Shivers RR; Atkinson BG
    Am J Pathol; 1984 Sep; 116(3):482-96. PubMed ID: 6476081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proopiomelanocortin-derived peptides in mice with motoneurone disease.
    Hughes S; Smith ME
    Neurosci Lett; 1989 Aug; 103(2):169-73. PubMed ID: 2549469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences in enzyme efflux from dystrophic mouse skeletal muscle and heart.
    Morgan J; Bozyk ME; Bittner S; Cohen L
    Res Commun Chem Pathol Pharmacol; 1980 Dec; 30(3):555-76. PubMed ID: 7255864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in isometric contractile properties of fast-twitch and slow-twitch skeletal muscle of C57BL/6J dy2J/dy2J dystrophic mice during postnatal development.
    Bressler BH; Jasch LG; Ovalle WK; Slonecker CE
    Exp Neurol; 1983 May; 80(2):457-70. PubMed ID: 6840250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of membrane-mediated chronic muscle degeneration in dystrophic hamsters by calcium-channel blockers: diltiazem, nifedipine and verapamil.
    Johnson PL; Bhattacharya SK
    J Neurol Sci; 1993 Mar; 115(1):76-90. PubMed ID: 8468595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Opioid receptors in fast and slow skeletal muscles of normal and dystrophic mice.
    Evans AA; Smith ME
    Neurosci Lett; 2004 Aug; 366(3):339-41. PubMed ID: 15288447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Presence of immunoreactive alpha-melanotropin and beta-endorphin in spinal motoneurones of the dystrophic mouse.
    Haynes LW; Smith ME
    Neurosci Lett; 1985 Jul; 58(1):13-8. PubMed ID: 2931622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contractile function and low-intensity exercise effects of old dystrophic (mdx) mice.
    Hayes A; Williams DA
    Am J Physiol; 1998 Apr; 274(4):C1138-44. PubMed ID: 9575811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pro-opiomelanocortin neuropeptide receptors on developing and dystrophic muscle fibers.
    Smith ME; Hughes S
    Mol Chem Neuropathol; 1993; 19(1-2):137-45. PubMed ID: 8395849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced dystrophic progression in mdx mice by exercise and beneficial effects of taurine and insulin-like growth factor-1.
    De Luca A; Pierno S; Liantonio A; Cetrone M; Camerino C; Fraysse B; Mirabella M; Servidei S; Rüegg UT; Conte Camerino D
    J Pharmacol Exp Ther; 2003 Jan; 304(1):453-63. PubMed ID: 12490622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developmental changes in fiber type-related proteins in soleus, rectus femoris, and heart muscles of normal and dystrophic mice.
    Kato K; Shimizu A; Totsuka T
    J Neurol Sci; 1988 Jun; 85(2):161-71. PubMed ID: 3385432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. POMC neuropeptides and their receptors in the neuromuscular system of wobbler mice.
    Smith ME; Hughes S
    J Neurol Sci; 1994 Jul; 124 Suppl():56-8. PubMed ID: 7807142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.