These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 7596345)

  • 41. Tau protein binding forms a 1 nm thick layer along protofilaments without affecting the radial elasticity of microtubules.
    Schaap IA; Hoffmann B; Carrasco C; Merkel R; Schmidt CF
    J Struct Biol; 2007 Jun; 158(3):282-92. PubMed ID: 17329123
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Overexpression of tau in a nonneuronal cell induces long cellular processes.
    Knops J; Kosik KS; Lee G; Pardee JD; Cohen-Gould L; McConlogue L
    J Cell Biol; 1991 Aug; 114(4):725-33. PubMed ID: 1678391
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Molecular mechanisms of Tau binding to microtubules and its role in microtubule dynamics in live cells.
    Breuzard G; Hubert P; Nouar R; De Bessa T; Devred F; Barbier P; Sturgis JN; Peyrot V
    J Cell Sci; 2013 Jul; 126(Pt 13):2810-9. PubMed ID: 23659998
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characterization of Microtubule-Associated Proteins (MAPs) and Tubulin Interactions by Isothermal Titration Calorimetry (ITC).
    Tsvetkov PO; La Rocca R; Malesinski S; Devred F
    Methods Mol Biol; 2019; 1964():151-165. PubMed ID: 30929242
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Characterization of microtubule-associated proteins in teleosts.
    Tomasiewicz HG; Wood JG
    Cell Motil Cytoskeleton; 1999 Nov; 44(3):155-67. PubMed ID: 10542364
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The FTDP-17-linked mutation R406W abolishes the interaction of phosphorylated tau with microtubules.
    Pérez M; Lim F; Arrasate M; Avila J
    J Neurochem; 2000 Jun; 74(6):2583-9. PubMed ID: 10820221
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Tau-isoform dependent enhancement of taxol mobility through microtubules.
    Park H; Kim M; Fygenson DK
    Arch Biochem Biophys; 2008 Oct; 478(1):119-26. PubMed ID: 18691553
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization of tau protein present in microtubules and paired helical filaments of Alzheimer's disease patient's brain.
    Nieto A; Montejo de Garcini E; Correas I; Avila J
    Neuroscience; 1990; 37(1):163-70. PubMed ID: 2123019
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Analyzing the components of microtubules: antibodies against chartins, associated proteins from cultured cells.
    Magendantz M; Solomon F
    Proc Natl Acad Sci U S A; 1985 Oct; 82(19):6581-5. PubMed ID: 3863114
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effect of multivalent cations and Tau on paclitaxel-stabilized microtubule assembly, disassembly, and structure.
    Safinya CR; Chung PJ; Song C; Li Y; Ewert KK; Choi MC
    Adv Colloid Interface Sci; 2016 Jun; 232():9-16. PubMed ID: 26684364
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Tau co-organizes dynamic microtubule and actin networks.
    Elie A; Prezel E; Guérin C; Denarier E; Ramirez-Rios S; Serre L; Andrieux A; Fourest-Lieuvin A; Blanchoin L; Arnal I
    Sci Rep; 2015 May; 5():9964. PubMed ID: 25944224
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Localization of tau and other proteins of isolated marginal bands.
    Sanchez I; Cohen WD
    Cell Motil Cytoskeleton; 1994; 27(4):350-60. PubMed ID: 8069941
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tau microheterogeneity: an immunological approach with monoclonal antibodies.
    Fellous A; Ohayon R; Mazie JC; Rosa F; Luduena RF; Prasad V
    Ann N Y Acad Sci; 1986; 466():240-56. PubMed ID: 3089107
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Morphological transformation of liposomes caused by assembly of encapsulated tubulin and determination of shape by microtubule-associated proteins (MAPs).
    Kaneko T; Itoh TJ; Hotani H
    J Mol Biol; 1998 Dec; 284(5):1671-81. PubMed ID: 9878378
    [TBL] [Abstract][Full Text] [Related]  

  • 55. tau Regulation of microtubule-microtubule spacing and bundling.
    Frappier TF; Georgieff IS; Brown K; Shelanski ML
    J Neurochem; 1994 Dec; 63(6):2288-94. PubMed ID: 7964749
    [TBL] [Abstract][Full Text] [Related]  

  • 56. First tau repeat domain binding to growing and taxol-stabilized microtubules, and serine 262 residue phosphorylation.
    Devred F; Douillard S; Briand C; Peyrot V
    FEBS Lett; 2002 Jul; 523(1-3):247-51. PubMed ID: 12123840
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Discodermolide, a cytotoxic marine agent that stabilizes microtubules more potently than taxol.
    ter Haar E; Kowalski RJ; Hamel E; Lin CM; Longley RE; Gunasekera SP; Rosenkranz HS; Day BW
    Biochemistry; 1996 Jan; 35(1):243-50. PubMed ID: 8555181
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Tau Interaction with Tubulin and Microtubules: From Purified Proteins to Cells.
    De Bessa T; Breuzard G; Allegro D; Devred F; Peyrot V; Barbier P
    Methods Mol Biol; 2017; 1523():61-85. PubMed ID: 27975244
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synchrotron small-angle X-ray scattering and electron microscopy characterization of structures and forces in microtubule/Tau mixtures.
    Chung PJ; Song C; Miller HP; Li Y; Raviv U; Choi MC; Wilson L; Feinstein SC; Safinya CR
    Methods Cell Biol; 2017; 141():155-178. PubMed ID: 28882300
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Axonal transport of a subclass of tau proteins: evidence for the regional differentiation of microtubules in neurons.
    Tytell M; Brady ST; Lasek RJ
    Proc Natl Acad Sci U S A; 1984 Mar; 81(5):1570-4. PubMed ID: 6200879
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.