These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

389 related articles for article (PubMed ID: 7596980)

  • 1. Antigene, ribozyme and aptamer nucleic acid drugs: progress and prospects.
    Stull RA; Szoka FC
    Pharm Res; 1995 Apr; 12(4):465-83. PubMed ID: 7596980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleic acid based sensors.
    Bier FF; Fürste JP
    EXS; 1997; 80():97-120. PubMed ID: 9002209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic selectivity of complementary nucleic acids: bcr-abl-directed antisense RNA and ribozymes.
    Kronenwett R; Haas R; Sczakiel G
    J Mol Biol; 1996 Jun; 259(4):632-44. PubMed ID: 8683570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Molecular evolution: creation of nucleic acids capable of specific complex formation and possessing catalytic functions].
    Vlasova IE; Vlasov VV
    Mol Biol (Mosk); 1993; 27(1):5-13. PubMed ID: 7683371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoswitch nucleic acid catalytic activity by regulating topological structure with a universal supraphotoswitch.
    Liang X; Zhou M; Kato K; Asanuma H
    ACS Synth Biol; 2013 Apr; 2(4):194-202. PubMed ID: 23656478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anti-HIV inhibitors based on nucleic acids: emergence of aptamers as potent antivirals.
    Joshi PJ; Fisher TS; Prasad VR
    Curr Drug Targets Infect Disord; 2003 Dec; 3(4):383-400. PubMed ID: 14754437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perfectly complementary nucleic acid enzymes.
    Kuhns ST; Joyce GF
    J Mol Evol; 2003 Jun; 56(6):711-7. PubMed ID: 12911034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Triple helix formation and the antigene strategy for sequence-specific control of gene expression.
    Praseuth D; Guieysse AL; Hélène C
    Biochim Biophys Acta; 1999 Dec; 1489(1):181-206. PubMed ID: 10807007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction between tumour necrosis factor alpha ribozyme and cellular proteins. Involvement in ribozyme stability and activity.
    Sioud M
    J Mol Biol; 1994 Oct; 242(5):619-29. PubMed ID: 7932719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multifunctional expression vector for an anti-HIV-1 ribozyme that produces a 5'- and 3'-trimmed trans-acting ribozyme, targeted against HIV-1 RNA, and cis-acting ribozymes that are designed to bind to and thereby sequester trans-activator proteins such as Tat and Rev.
    Yuyama N; Ohkawa J; Koguma T; Shirai M; Taira K
    Nucleic Acids Res; 1994 Nov; 22(23):5060-7. PubMed ID: 7800500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-resolved synchrotron X-ray "footprinting", a new approach to the study of nucleic acid structure and function: application to protein-DNA interactions and RNA folding.
    Sclavi B; Woodson S; Sullivan M; Chance MR; Brenowitz M
    J Mol Biol; 1997 Feb; 266(1):144-59. PubMed ID: 9054977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA aptamer-mediated regulation of the hairpin ribozyme by human alpha-thrombin.
    Najafi-Shoushtari SH; Famulok M
    Blood Cells Mol Dis; 2007; 38(1):19-24. PubMed ID: 17150386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bifacial peptide nucleic acid as an allosteric switch for aptamer and ribozyme function.
    Xia X; Piao X; Bong D
    J Am Chem Soc; 2014 May; 136(20):7265-8. PubMed ID: 24796374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multitarget-ribozyme directed to cleave at up to nine highly conserved HIV-1 env RNA regions inhibits HIV-1 replication--potential effectiveness against most presently sequenced HIV-1 isolates.
    Chen CJ; Banerjea AC; Harmison GG; Haglund K; Schubert M
    Nucleic Acids Res; 1992 Sep; 20(17):4581-9. PubMed ID: 1408760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Target sequence-specific inhibition of HIV-1 replication by ribozymes directed to tat RNA.
    Sun LQ; Wang L; Gerlach WL; Symonds G
    Nucleic Acids Res; 1995 Aug; 23(15):2909-13. PubMed ID: 7544887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modification and application of self-trimming hairpin ribozymes to targeting a transcribed RNA in vitro.
    Komatsu Y; Shirai M; Ohtsuka E
    J Biochem; 1998 Nov; 124(5):986-91. PubMed ID: 9792923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective cleavage of bcr-abl chimeric RNAs by a ribozyme targeted to non-contiguous sequences.
    Pachuk CJ; Yoon K; Moelling K; Coney LR
    Nucleic Acids Res; 1994 Feb; 22(3):301-7. PubMed ID: 8127665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of the hairpin ribozyme for targeting specific RNA sequences.
    Hampel A; DeYoung MB; Galasinski S; Siwkowski A
    Methods Mol Biol; 1997; 74():171-7. PubMed ID: 9204432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Triplex forming oligonucleotides--tool for gene targeting.
    Mojzísek M
    Acta Medica (Hradec Kralove); 2004; 47(3):151-6. PubMed ID: 15568730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA-Catalyzed Polymerization of Deoxyribose, Threose, and Arabinose Nucleic Acids.
    Horning DP; Bala S; Chaput JC; Joyce GF
    ACS Synth Biol; 2019 May; 8(5):955-961. PubMed ID: 31042360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.