These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 7597828)

  • 1. [The behavioral reactions of fresh-water crayfish to sensory exposures: the motor components].
    Burmistrov IuM; Shuranova ZhP
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1995; 45(2):311-20. PubMed ID: 7597828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The behavioral reactions of fresh-water crayfish to sensory exposures: the autonomic components].
    Shuranova ZhP; Vekhov AV; Burmistrov IuM
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1993; 43(6):1159-69. PubMed ID: 8135058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The orienting reaction in invertebrates].
    Shuranova ZhP; Burmistrov IuM
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1995; 45(3):510-20. PubMed ID: 7645326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The background locomotor activity of the crayfish Procambarus cubensis as an index of the animal's functional status].
    Shuranova ZhP; Burmistrov IuM
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1994; 44(1):91-101. PubMed ID: 8171911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chronic electromyographic analysis of circadian locomotor activity in crayfish.
    Tomina Y; Kibayashi A; Yoshii T; Takahata M
    Behav Brain Res; 2013 Jul; 249():90-103. PubMed ID: 23631885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Behavioral context-dependent modulation of descending statocyst pathways during free walking, as revealed by optical telemetry in crayfish.
    Hama N; Tsuchida Y; Takahata M
    J Exp Biol; 2007 Jun; 210(Pt 12):2199-211. PubMed ID: 17562894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Morphofunctional study of statocyst of the Cuban crayfish Procambarus cubensis].
    Kharkevich TA; Gorgiladze GI
    Zh Evol Biokhim Fiziol; 2000; 36(1):54-8. PubMed ID: 10752160
    [No Abstract]   [Full Text] [Related]  

  • 8. Response properties of crayfish antennules to hydrodynamic stimuli: functional differences in the lateral and medial flagella.
    Monteclaro HM; Anraku K; Matsuoka T
    J Exp Biol; 2010 Nov; 213(Pt 21):3683-91. PubMed ID: 20952616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An optical telemetry system for underwater recording of electromyogram and neuronal activity from non-tethered crayfish.
    Tsuchida Y; Hama N; Takahata M
    J Neurosci Methods; 2004 Aug; 137(1):103-9. PubMed ID: 15196832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Motor activity enablement by sensory stimuli in Parkinson's disease].
    Fernández-Del Olmo M; Arias P; Cudeiro-Mazaira FJ
    Rev Neurol; 2004 Nov 1-15; 39(9):841-7. PubMed ID: 15543501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of sensory input parameters on efferent output of spike activity of river crayfish neurons].
    Fedotov VP
    Zh Evol Biokhim Fiziol; 1980; 16(5):437-43. PubMed ID: 7424305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Habitat-related divergence among tailfan sensory systems in reptantian Decapod crustaceans.
    Bock NL; Paul DH
    Brain Behav Evol; 2009; 73(3):188-205. PubMed ID: 19494487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental modification of stepping course in spontaneously initiated locomotor behavior in the crayfish Procambarus clarkii Girard.
    Yamane S; Takahata M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Feb; 188(1):13-23. PubMed ID: 11935227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo analysis of proprioceptive coding and its antidromic modulation in the freely behaving crayfish.
    Le Ray D; Combes D; Déjean C; Cattaert D
    J Neurophysiol; 2005 Aug; 94(2):1013-27. PubMed ID: 15829591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Circadian regulation of agonistic behavior in groups of parthenogenetic marbled crayfish, Procambarus sp.
    Farca Luna AJ; Hurtado-Zavala JI; Reischig T; Heinrich R
    J Biol Rhythms; 2009 Feb; 24(1):64-72. PubMed ID: 19150930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Habituation of mechanoreceptive interneurons in the crayfish.
    Aréchiga H; Barrera-Mera B; Fuentes-Pardo B
    J Neurobiol; 1975 Mar; 6(2):131-44. PubMed ID: 1185178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new electrode configuration for recording electromyographic activity in behaving mice.
    Pearson KG; Acharya H; Fouad K
    J Neurosci Methods; 2005 Oct; 148(1):36-42. PubMed ID: 15908013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Heart activity of the crayfish Astacus astacus in various functional states].
    Fedotov VP; Kholodkevich SV; Strochilo AG
    Zh Evol Biokhim Fiziol; 2002; 38(1):36-44. PubMed ID: 11966202
    [No Abstract]   [Full Text] [Related]  

  • 19. Factors inducing the intense burrowing activity of the red-swamp crayfish, Procambarus clarkii, an invasive species.
    Barbaresi S; Tricarico E; Gherardi F
    Naturwissenschaften; 2004 Jul; 91(7):342-5. PubMed ID: 15257390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Avoidance learning in the crayfish (Procambarus clarkii) depends on the predatory imminence of the unconditioned stimulus: a behavior systems approach to learning in invertebrates.
    Kawai N; Kono R; Sugimoto S
    Behav Brain Res; 2004 Apr; 150(1-2):229-37. PubMed ID: 15033297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.