These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 7597844)

  • 21. Effect of carbon source perturbations on transcriptional regulation of metabolic fluxes in Saccharomyces cerevisiae.
    Cakir T; Kirdar B; Onsan ZI; Ulgen KO; Nielsen J
    BMC Syst Biol; 2007 Mar; 1():18. PubMed ID: 17408508
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Exopolysaccharide production and peculiarities of C6-metabolism in Acinetobacter sp. grown on carbohydrate substrates].
    Pirog TP; Kovalenko MA; Kuz'minskaia IuV
    Mikrobiologiia; 2002; 71(2):215-21. PubMed ID: 12024822
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Glucose metabolism, enzymic analysis and product formation in chemostat culture of Hanseniaspora uvarum.
    Venturin C; Boze H; Moulin G; Galzy P
    Yeast; 1995 Apr; 11(4):327-36. PubMed ID: 7785333
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metabolic fluxes in chemostat cultures of Schizosaccharomyces pombe grown on mixtures of glucose and ethanol.
    de Jong-Gubbels P; van Dijken JP; Pronk JT
    Microbiology (Reading); 1996 Jun; 142 ( Pt 6)():1399-1407. PubMed ID: 8704980
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Insufficient uracil supply in fully aerobic chemostat cultures of Saccharomyces cerevisiae leads to respiro-fermentative metabolism and double nutrient-limitation.
    Basso TO; Dario MG; Tonso A; Stambuk BU; Gombert AK
    Biotechnol Lett; 2010 Jul; 32(7):973-7. PubMed ID: 20349336
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gluconeogenesis in Saccharomyces cerevisiae: determination of fructose-1,6-bisphosphatase activity in cells grown in the presence of glycolytic carbon sources.
    Foy JJ; Bhattacharjee JK
    J Bacteriol; 1977 Feb; 129(2):978-82. PubMed ID: 190213
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Central carbon metabolism of Saccharomyces cerevisiae in anaerobic, oxygen-limited and fully aerobic steady-state conditions and following a shift to anaerobic conditions.
    Wiebe MG; Rintala E; Tamminen A; Simolin H; Salusjärvi L; Toivari M; Kokkonen JT; Kiuru J; Ketola RA; Jouhten P; Huuskonen A; Maaheimo H; Ruohonen L; Penttilä M
    FEMS Yeast Res; 2008 Feb; 8(1):140-54. PubMed ID: 17425669
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oleic acid delays and modulates the transition from respiratory to fermentative metabolism in Saccharomyces cerevisiae after exposure to glucose excess.
    Feria-Gervasio D; Mouret JR; Gorret N; Goma G; Guillouet SE
    Appl Microbiol Biotechnol; 2008 Feb; 78(2):319-31. PubMed ID: 17909788
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling threshold phenomena, metabolic pathways switches and signals in chemostat-cultivated cells: the Crabtree effect in Saccharomyces cerevisiae.
    Thierie J
    J Theor Biol; 2004 Feb; 226(4):483-501. PubMed ID: 14759654
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Engineering of carbon catabolite repression in recombinant xylose fermenting Saccharomyces cerevisiae.
    Roca C; Haack MB; Olsson L
    Appl Microbiol Biotechnol; 2004 Feb; 63(5):578-83. PubMed ID: 12925863
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Crabtree-negative characteristics of recombinant xylose-utilizing Saccharomyces cerevisiae.
    Souto-Maior AM; Runquist D; Hahn-Hägerdal B
    J Biotechnol; 2009 Aug; 143(2):119-23. PubMed ID: 19560495
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [The enzyme of carbon metabolism in the thermotolerant sulfobacillus strain K1].
    Karavaĭko GI; Zakharchuk LM; Bogdanova TI; Egorova MA; Tsaplina IA; Krasil'nikova EN
    Mikrobiologiia; 2002; 71(6):755-61. PubMed ID: 12526195
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Hsp70 chaperone Ssa1 is essential for catabolite induced degradation of the gluconeogenic enzyme fructose-1,6-bisphosphatase.
    Juretschke J; Menssen R; Sickmann A; Wolf DH
    Biochem Biophys Res Commun; 2010 Jul; 397(3):447-52. PubMed ID: 20513352
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The fate of glucose in strains S288C and S173-6B of the yeast Saccharomyces cerevisiae.
    Pedler SM; Wallace PG; Wallace JC; Berry MN
    Yeast; 1997 Feb; 13(2):119-25. PubMed ID: 9046093
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Carbon metabolism in Sulfobacillus thermosulfidooxidans subsp. asporogenes, strain 41].
    Tsaplina IA; Krasil'nikova EN; Zakharchuk LM; Egorova MA; Bogdanova TI; Karavaĭko GI
    Mikrobiologiia; 2000; 69(3):334-40. PubMed ID: 10920801
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fed-batch cultivation of Saccharomyces cerevisiae in a hyperbaric bioreactor.
    Belo I; Pinheiro R; Mota M
    Biotechnol Prog; 2003; 19(2):665-71. PubMed ID: 12675615
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The importance of ATP as a regulator of glycolytic flux in Saccharomyces cerevisiae.
    Larsson C; Påhlman IL; Gustafsson L
    Yeast; 2000 Jun; 16(9):797-809. PubMed ID: 10861904
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On the activity and regulation of anaplerotic and gluconeogenetic enzymes during the growth process of baker's yeast. The biphasic growth.
    Haarasilta S; Oura E
    Eur J Biochem; 1975 Mar; 52(1):1-7. PubMed ID: 170081
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermodynamic analysis of fermentation and anaerobic growth of baker's yeast for ethanol production.
    Teh KY; Lutz AE
    J Biotechnol; 2010 May; 147(2):80-7. PubMed ID: 20184925
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Anaerobic homolactate fermentation with Saccharomyces cerevisiae results in depletion of ATP and impaired metabolic activity.
    Abbott DA; van den Brink J; Minneboo IM; Pronk JT; van Maris AJ
    FEMS Yeast Res; 2009 May; 9(3):349-57. PubMed ID: 19416100
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.