These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 7597937)
41. Multimodal investigation of fMRI and fNIRS derived breath hold BOLD signals with an expanded balloon model. Emir UE; Ozturk C; Akin A Physiol Meas; 2008 Jan; 29(1):49-63. PubMed ID: 18175859 [TBL] [Abstract][Full Text] [Related]
42. Preserved metabolic coupling and cerebrovascular reactivity during mild hypothermia after cardiac arrest. Bisschops LL; Hoedemaekers CW; Simons KS; van der Hoeven JG Crit Care Med; 2010 Jul; 38(7):1542-7. PubMed ID: 20453643 [TBL] [Abstract][Full Text] [Related]
43. Cerebrovascular response to acute hypocapnic and eucapnic hypoxia in normal man. Shapiro W; Wasserman AJ; Baker JP; Patterson JL J Clin Invest; 1970 Dec; 49(12):2362-8. PubMed ID: 5480859 [TBL] [Abstract][Full Text] [Related]
44. Cerebral hemodynamics and oxygenation in preterm infants after low-vs. high-dose surfactant replacement therapy. Dorrepaal CA; Benders MJ; Steendijk P; van de Bor M; van Bel F Biol Neonate; 1993; 64(4):193-200. PubMed ID: 8260553 [TBL] [Abstract][Full Text] [Related]
45. Carbon Dioxide Fluctuations Are Associated with Changes in Cerebral Oxygenation and Electrical Activity in Infants Born Preterm. Dix LML; Weeke LC; de Vries LS; Groenendaal F; Baerts W; van Bel F; Lemmers PMA J Pediatr; 2017 Aug; 187():66-72.e1. PubMed ID: 28578157 [TBL] [Abstract][Full Text] [Related]
46. Cerebral hemodynamic effects of treatment with modified natural surfactant investigated by near infrared spectroscopy. Edwards AD; McCormick DC; Roth SC; Elwell CE; Peebles DM; Cope M; Wyatt JS; Delpy DT; Reynolds EO Pediatr Res; 1992 Nov; 32(5):532-6. PubMed ID: 1480454 [TBL] [Abstract][Full Text] [Related]
47. Assessment of local changes of cerebral perfusion and blood concentration by near infrared spectroscopy and ultrasound contrast densitometry. Klaessens JH; Hopman JC; van Wijk MC; Djien Liem K; Thijssen JM Brain Dev; 2005 Sep; 27(6):406-14. PubMed ID: 16122627 [TBL] [Abstract][Full Text] [Related]
48. Cerebral arterial and venous contributions to tissue oxygenation index measured using spatially resolved spectroscopy in newborn lambs. Wong FY; Alexiou T; Samarasinghe T; Brodecky V; Walker AM Anesthesiology; 2010 Dec; 113(6):1385-91. PubMed ID: 21068664 [TBL] [Abstract][Full Text] [Related]
49. [Conjunct changes in the resistance and engorgement of the cerebral vessels in shifts in the blood gas composition]. Krasil'nikov VG; Artem'eva AI Fiziol Zh SSSR Im I M Sechenova; 1982 Aug; 68(8):1130-6. PubMed ID: 6813150 [TBL] [Abstract][Full Text] [Related]
50. Targeting low- or high-normal Carbon dioxide, Oxygen, and Mean arterial pressure After Cardiac Arrest and REsuscitation: study protocol for a randomized pilot trial. Jakkula P; Reinikainen M; Hästbacka J; Pettilä V; Loisa P; Karlsson S; Laru-Sompa R; Bendel S; Oksanen T; Birkelund T; Tiainen M; Toppila J; Hakkarainen A; Skrifvars MB; Trials; 2017 Oct; 18(1):507. PubMed ID: 29084585 [TBL] [Abstract][Full Text] [Related]
51. Effect of the adjunct of carbon dioxide during cardiopulmonary bypass on cerebral oxygenation. Quarti A; Nardone S; Manfrini F; D'Orfeo F; Genova S; Silvano R; Pozzi M Perfusion; 2013 Mar; 28(2):152-5. PubMed ID: 23095347 [TBL] [Abstract][Full Text] [Related]
52. Near infrared spectroscopy (NIRS) measurements during global cerebral ischemia in sheep. Martinez-Coll AA; Morgan MK; Nguyen HT Adv Exp Med Biol; 2003; 510():349-54. PubMed ID: 12580452 [No Abstract] [Full Text] [Related]
53. A broadband continuous-wave multichannel near-infrared system for measuring regional cerebral blood flow and oxygen consumption in newborn piglets. Diop M; Elliott JT; Tichauer KM; Lee TY; St Lawrence K Rev Sci Instrum; 2009 May; 80(5):054302. PubMed ID: 19485521 [TBL] [Abstract][Full Text] [Related]
54. [Detection of changes in cerebral blood flow and cerebrovascular autoregulation by near-infrared spectroscopy in newborn piglets]. Huang HJ; Shao XM; Cheng GQ Zhonghua Er Ke Za Zhi; 2007 May; 45(5):349-53. PubMed ID: 17697620 [TBL] [Abstract][Full Text] [Related]
55. Utility of cerebral oxymetry for assessing cerebral arteriolar carbon dioxide reactivity during cardiopulmonary bypass. Ariturk C; Okten M; Ozgen ZS; Erkek E; Uysal P; Gullu U; Senay S; Karabulut H; Alhan C; Toraman F Heart Surg Forum; 2014 Jun; 17(3):E169-72. PubMed ID: 25002395 [TBL] [Abstract][Full Text] [Related]
57. Control of cerebral circulation in the high-risk neonate. Pryds O Ann Neurol; 1991 Sep; 30(3):321-9. PubMed ID: 1952819 [TBL] [Abstract][Full Text] [Related]
58. Chronic nonpulsatile blood flow. I. Cerebral autoregulation in chronic nonpulsatile biventricular bypass: carotid blood flow response to hypercapnia. Tominaga R; Smith WA; Massiello A; Harasaki H; Golding LA J Thorac Cardiovasc Surg; 1994 Nov; 108(5):907-12. PubMed ID: 7967674 [TBL] [Abstract][Full Text] [Related]
59. Effect of sympathetic nervous system on cerebral blood flow in the newborn piglet. Monin P; Feillet F; Hascoet JM; Vert P Biol Neonate; 1990; 58(4):192-9. PubMed ID: 2125504 [TBL] [Abstract][Full Text] [Related]
60. Near infrared spectroscopy detects cerebral ischemia during hypotension in piglets. Tsuji M; duPlessis A; Taylor G; Crocker R; Volpe JJ Pediatr Res; 1998 Oct; 44(4):591-5. PubMed ID: 9773851 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]