These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 7597938)

  • 41. Modelling diffusive O(2) supply to isolated preparations of mammalian skeletal and cardiac muscle.
    Barclay CJ
    J Muscle Res Cell Motil; 2005; 26(4-5):225-35. PubMed ID: 16322911
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cardiac UCP2 expression and myocardial oxidative metabolism during acute septic shock in the rat.
    Roshon MJ; Kline JA; Thornton LR; Watts JA
    Shock; 2003 Jun; 19(6):570-6. PubMed ID: 12785014
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Drug-induced mitochondrial dysfunction in cardiac and skeletal muscle injury.
    Sardão VA; Pereira SL; Oliveira PJ
    Expert Opin Drug Saf; 2008 Mar; 7(2):129-46. PubMed ID: 18324876
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Oxygen sensitivity of mitochondrial metabolic state in isolated skeletal and cardiac myocytes.
    Richmond KN; Burnite S; Lynch RM
    Am J Physiol; 1997 Nov; 273(5):C1613-22. PubMed ID: 9374647
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bovine mitochondrial oxygen consumption effects on oxymyoglobin in the presence of lactate as a substrate for respiration.
    Ramanathan R; Mancini RA; Joseph P; Suman SP
    Meat Sci; 2013 Apr; 93(4):893-7. PubMed ID: 23314615
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Myocardial dynamics, contractility, O2 consumption, and K+ balance during paired stimulation.
    Sarnoff SJ; Gilmore JP; Daggett WM; Mansfield PB; Weisfeldt ML; McDonald RH
    Am J Physiol; 1966 Aug; 211(2):376-86. PubMed ID: 5921099
    [No Abstract]   [Full Text] [Related]  

  • 47. Functional and structural alterations of cardiac and skeletal muscle mitochondria in heart failure patients.
    Guzmán Mentesana G; Báez AL; Lo Presti MS; Domínguez R; Córdoba R; Bazán C; Strauss M; Fretes R; Rivarola HW; Paglini-Oliva P
    Arch Med Res; 2014 Apr; 45(3):237-46. PubMed ID: 24657595
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Skeletal muscle metabolism in endurance athletes with near-infrared spectroscopy.
    Brizendine JT; Ryan TE; Larson RD; McCully KK
    Med Sci Sports Exerc; 2013 May; 45(5):869-75. PubMed ID: 23247709
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Role of nitric oxide and mitochondrial permeability pore in changes of oxygen consumption in the working skeletal muscle].
    Sahach VF; Bohuslavs'kyĭ AIu; Dmytriieva AV; Nadtochiĭ SM
    Fiziol Zh (1994); 2004; 50(2):19-26. PubMed ID: 15174202
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A comparison of exercise type and intensity on the noninvasive assessment of skeletal muscle mitochondrial function using near-infrared spectroscopy.
    Ryan TE; Brizendine JT; McCully KK
    J Appl Physiol (1985); 2013 Jan; 114(2):230-7. PubMed ID: 23154991
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cardiac and skeletal muscle mitochondria have a monocarboxylate transporter MCT1.
    Brooks GA; Brown MA; Butz CE; Sicurello JP; Dubouchaud H
    J Appl Physiol (1985); 1999 Nov; 87(5):1713-8. PubMed ID: 10562613
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Does energy demand have an additional control in ischemia or are current models of metabolic control adequate at extremes?
    Connett RJ; Gayeski TE; Honig CR
    Adv Exp Med Biol; 1994; 361():509-20. PubMed ID: 7597977
    [No Abstract]   [Full Text] [Related]  

  • 53. MITOCHONDRIAL DYNAMICS AND METABOLIC REGULATION IN CARDIAC AND SKELETAL MUSCLE.
    Abel ED
    Trans Am Clin Climatol Assoc; 2018; 129():266-278. PubMed ID: 30166722
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Effect of nitric oxide on the efficiency of oxygen consumption by the working skeletal muscle in fatigue].
    Bohuslavs'kyĭ AIu; Dmytriieva AV; Sahach VF
    Fiziol Zh (1994); 2005; 51(1):33-42. PubMed ID: 15801198
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Preparation and respirometric assessment of mitochondria isolated from skeletal muscle tissue obtained by percutaneous needle biopsy.
    Bharadwaj MS; Tyrrell DJ; Lyles MF; Demons JL; Rogers GW; Molina AJ
    J Vis Exp; 2015 Feb; (96):. PubMed ID: 25741892
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Contractility and subcellular calcium metabolism in chronic potassium deficiency.
    Sack DW; Kim ND; Harrison CE
    Am J Physiol; 1974 Apr; 226(4):756-63. PubMed ID: 4823038
    [No Abstract]   [Full Text] [Related]  

  • 57. Contraction-by-contraction VO2 and computer-controlled pump perfusion as novel techniques to study skeletal muscle metabolism in situ.
    Hernández A; Goodwin ML; Lai N; Cabrera ME; McDonald JR; Gladden LB
    J Appl Physiol (1985); 2010 Mar; 108(3):705-12. PubMed ID: 20035064
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optical measurements of intracellular oxygen concentration of rat heart in vitro.
    Tamura M; Oshino N; Chance B; Silver IA
    Arch Biochem Biophys; 1978 Nov; 191(1):8-22. PubMed ID: 736575
    [No Abstract]   [Full Text] [Related]  

  • 59. Oxygen consumption of human skeletal muscle by near infrared spectroscopy during tourniquet-induced ischemia in maximal voluntary contraction.
    De Blasi RA; Cope M; Ferrari M
    Adv Exp Med Biol; 1992; 317():771-7. PubMed ID: 1288203
    [No Abstract]   [Full Text] [Related]  

  • 60. Blood flow and pressure relationships which determine VO2max.
    Brechue WF; Ameredes BT; Barclay JK; Stainsby WN
    Med Sci Sports Exerc; 1995 Jan; 27(1):37-42. PubMed ID: 7898335
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.