These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 7597941)

  • 1. Optical imaging of human breast cancer.
    Nioka S; Miwa M; Orel S; Shnall M; Haida M; Zhao S; Chance B
    Adv Exp Med Biol; 1994; 361():171-9. PubMed ID: 7597941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of optical properties of a breast tumor using random walk theory.
    Chernomordik V; Hattery DW; Grosenick D; Wabnitz H; Rinneberg H; Moesta KT; Schlag PM; Gandjbakhche A
    J Biomed Opt; 2002 Jan; 7(1):80-7. PubMed ID: 11818015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectral and temporal near-infrared imaging of ex vivo cancerous and normal human breast tissues.
    Alrubaiee M; Gayen SK; Alfano RR; Koutcher JA
    Technol Cancer Res Treat; 2005 Oct; 4(5):457-70. PubMed ID: 16173818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The design and characterization of a digital optical breast cancer imaging system.
    Flexman ML; Li Y; Bur AM; Fong CJ; Masciotti JM; Al Abdi R; Barbour RL; Hielscher AH
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3735-8. PubMed ID: 19163523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Near-infrared optical imaging of the breast with model-based reconstruction.
    Jiang H; Iftimia NV; Xu Y; Eggert JA; Fajardo LL; Klove KL
    Acad Radiol; 2002 Feb; 9(2):186-94. PubMed ID: 11918371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy.
    Cerussi A; Shah N; Hsiang D; Durkin A; Butler J; Tromberg BJ
    J Biomed Opt; 2006; 11(4):044005. PubMed ID: 16965162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Submicrometer infrared surface imaging using a scanning-probe microscope and an optical parametric oscillator laser.
    Hill GA; Rice JH; Meech SR; Craig DQ; Kuo P; Vodopyanov K; Reading M
    Opt Lett; 2009 Feb; 34(4):431-3. PubMed ID: 19373331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Translation of a portable diffuse optical breast scanner probe for clinical application: a preliminary study.
    Shokoufi M; Haeri Z; Lim ZY; Ramaseshan R; Golnaraghi F
    Biomed Phys Eng Express; 2020 Feb; 6(1):015037. PubMed ID: 33438625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Breast cancer detection by mapping hemoglobin concentration and oxygen saturation.
    Cheng X; Mao JM; Bush R; Kopans DB; Moore RH; Chorlton M
    Appl Opt; 2003 Nov; 42(31):6412-21. PubMed ID: 14649285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near-infrared imaging of the human breast: complementing hemoglobin concentration maps with oxygenation images.
    Heffer E; Pera V; Schütz O; Siebold H; Fantini S
    J Biomed Opt; 2004; 9(6):1152-60. PubMed ID: 15568935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromophore concentrations, absorption and scattering properties of human skin in-vivo.
    Tseng SH; Bargo P; Durkin A; Kollias N
    Opt Express; 2009 Aug; 17(17):14599-617. PubMed ID: 19687939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical imaging of breast tumor by means of continuous waves.
    Nioka S; Yung Y; Shnall M; Zhao S; Orel S; Xie C; Chance B; Solin L
    Adv Exp Med Biol; 1997; 411():227-32. PubMed ID: 9269431
    [No Abstract]   [Full Text] [Related]  

  • 13. Photoacoustic detection and optical spectroscopy of high-intensity focused ultrasound-induced thermal lesions in biologic tissue.
    Alhamami M; Kolios MC; Tavakkoli J
    Med Phys; 2014 May; 41(5):053502. PubMed ID: 24784408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contrast in diaphanography of the breast.
    Navarro GA; Profio AE
    Med Phys; 1988; 15(2):181-7. PubMed ID: 3386586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas.
    Grosenick D; Wabnitz H; Moesta KT; Mucke J; Schlag PM; Rinneberg H
    Phys Med Biol; 2005 Jun; 50(11):2451-68. PubMed ID: 15901948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scientific basis of breast diaphanography.
    Profio AE; Navarro GA; Sartorius OW
    Med Phys; 1989; 16(1):60-5. PubMed ID: 2921981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Quantitative Diffuse Reflectance Imaging (QDRI) System for Comprehensive Surveillance of the Morphological Landscape in Breast Tumor Margins.
    Nichols BS; Schindler CE; Brown JQ; Wilke LG; Mulvey CS; Krieger MS; Gallagher J; Geradts J; Greenup RA; Von Windheim JA; Ramanujam N
    PLoS One; 2015; 10(6):e0127525. PubMed ID: 26076123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional optical tomography: resolution in small-object imaging.
    Dehghani H; Pogue BW; Shudong J; Brooksby B; Paulsen KD
    Appl Opt; 2003 Jun; 42(16):3117-28. PubMed ID: 12790463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Tumor Volume on the Fluence Rate Within Human Breast Model Using Continuous-Wave Diffuse Optical Imaging: A Simulation Study.
    Mahdy S; Hamdy O; Eldosoky MAA; Hassan MA
    Photobiomodul Photomed Laser Surg; 2023 Mar; 41(3):125-132. PubMed ID: 36927048
    [No Abstract]   [Full Text] [Related]  

  • 20. Near-infrared imaging in vivo (I): Image restoration technique applicable to the NIR projection images.
    Araki R; Nashimoto I
    Adv Exp Med Biol; 1992; 316():155-61. PubMed ID: 1288075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.