These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 7597977)

  • 21. [Energy metabolism of right ventricular myocardium following section of the left coronary artery].
    Razumnaia NM
    Kardiologiia; 1973 Mar; 13(3):62-6. PubMed ID: 4717187
    [No Abstract]   [Full Text] [Related]  

  • 22. Regulation of oxygen consumption at the onset of exercise.
    Hughson RL; Tschakovsky ME; Houston ME
    Exerc Sport Sci Rev; 2001 Jul; 29(3):129-33. PubMed ID: 11474961
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Decreased concentration of high-energy phosphates prevents a decrease in redox potential of skeletal muscles under gravitational unloading.
    Nemirovskaya TL; Shenkman BS; Matsievskii DD; Bychkova EYu ; Maevskii EI; Grishina E
    Dokl Biol Sci; 2000; 370():10-3. PubMed ID: 10781319
    [No Abstract]   [Full Text] [Related]  

  • 24. Regulation of metabolism: the work-to-rest transition in skeletal muscle.
    Wilson DF
    Am J Physiol Endocrinol Metab; 2016 Apr; 310(8):E633-E642. PubMed ID: 26837809
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impairment of ATP-linked reactions in mitochondria isolated from skeletal muscle of halothane-sensitive pigs.
    Ayoub S; Monin G; Rock E; Younes A
    Cell Biochem Funct; 1990 Oct; 8(4):205-10. PubMed ID: 2272118
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Factors determining the oxygen consumption rate (VO2) on-kinetics in skeletal muscles.
    Korzeniewski B; Zoladz JA
    Biochem J; 2004 May; 379(Pt 3):703-10. PubMed ID: 14744260
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effects of food intake on muscle oxygen consumption: noninvasive measurement using NIRS.
    Ueda C; Hamaoka T; Murase N; Osada T; Sako T; Murakami M; Kime R; Homma T; Nagasawa T; Kitahara A; Ichimura S; Moriguchi T; Nakagawa N; Katsumura T
    Adv Exp Med Biol; 2003; 540():277-86. PubMed ID: 15174631
    [No Abstract]   [Full Text] [Related]  

  • 28. Metabolic dynamics in skeletal muscle during acute reduction in blood flow and oxygen supply to mitochondria: in-silico studies using a multi-scale, top-down integrated model.
    Dash RK; Li Y; Kim J; Beard DA; Saidel GM; Cabrera ME
    PLoS One; 2008 Sep; 3(9):e3168. PubMed ID: 18779864
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Capillarisation, fibre types and myoglobin content of the dog gracilis muscle.
    Degens H; Ringnalda BE; Hoofd LJ
    Adv Exp Med Biol; 1994; 361():533-9. PubMed ID: 7597980
    [No Abstract]   [Full Text] [Related]  

  • 30. Glycolysis is independent of oxygenation state in stimulated human skeletal muscle in vivo.
    Conley KE; Kushmerick MJ; Jubrias SA
    J Physiol; 1998 Sep; 511 ( Pt 3)(Pt 3):935-45. PubMed ID: 9714871
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mitochondrial function and oxygen supply in normal and in chronically ischemic muscle: a combined 31P magnetic resonance spectroscopy and near infrared spectroscopy study in vivo.
    Kemp GJ; Roberts N; Bimson WE; Bakran A; Harris PL; Gilling-Smith GL; Brennan J; Rankin A; Frostick SP
    J Vasc Surg; 2001 Dec; 34(6):1103-10. PubMed ID: 11743568
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling the effects of hypoxia on ATP turnover in exercising muscle.
    Arthur PG; Hogan MC; Bebout DE; Wagner PD; Hochachka PW
    J Appl Physiol (1985); 1992 Aug; 73(2):737-42. PubMed ID: 1400004
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lactic acid: New roles in a new millennium.
    Gladden LB
    Proc Natl Acad Sci U S A; 2001 Jan; 98(2):395-7. PubMed ID: 11209043
    [No Abstract]   [Full Text] [Related]  

  • 34. Pathogenic significance of disproportion between myocardial oxygen supply and consumption.
    Scheuer J
    Recent Adv Stud Cardiac Struct Metab; 1972; 1():721-8. PubMed ID: 4681498
    [No Abstract]   [Full Text] [Related]  

  • 35. Energy expenditure of heavy to severe exercise and recovery.
    Scott CB
    J Theor Biol; 2000 Nov; 207(2):293-7. PubMed ID: 11034835
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Possible mechanisms underlying slow component of V̇O2 on-kinetics in skeletal muscle.
    Korzeniewski B; Zoladz JA
    J Appl Physiol (1985); 2015 May; 118(10):1240-9. PubMed ID: 25767031
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evidence of muscle BOLD effect revealed by simultaneous interleaved gradient-echo NMRI and myoglobin NMRS during leg ischemia.
    Lebon V; Brillault-Salvat C; Bloch G; Leroy-Willig A; Carlier PG
    Magn Reson Med; 1998 Oct; 40(4):551-8. PubMed ID: 9771572
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phosphorus 31 nuclear magnetic resonance spectroscopy suggests a mitochondrial defect in claudicating skeletal muscle.
    Pipinos II; Shepard AD; Anagnostopoulos PV; Katsamouris A; Boska MD
    J Vasc Surg; 2000 May; 31(5):944-52. PubMed ID: 10805885
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Skeletal muscle bioenergetics during all-out exercise: mechanistic insight into the oxygen uptake slow component and neuromuscular fatigue.
    Broxterman RM; Layec G; Hureau TJ; Amann M; Richardson RS
    J Appl Physiol (1985); 2017 May; 122(5):1208-1217. PubMed ID: 28209743
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Muscle oxygen uptake and energy turnover during dynamic exercise at different contraction frequencies in humans.
    Ferguson RA; Ball D; Krustrup P; Aagaard P; Kjaer M; Sargeant AJ; Hellsten Y; Bangsbo J
    J Physiol; 2001 Oct; 536(Pt 1):261-71. PubMed ID: 11579174
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.