These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
76 related articles for article (PubMed ID: 7598722)
1. Effect of ionic strength on membrane potential generation in reconstituted cytochrome c oxidase. Ivashchuk-Kienbaum YuA ; Kadenbach B Biochem Biophys Res Commun; 1995 Jun; 211(3):914-20. PubMed ID: 7598722 [TBL] [Abstract][Full Text] [Related]
2. H+/e- stoichiometry of mitochondrial cytochrome complexes reconstituted in liposomes. Rate-dependent changes of the stoichiometry in the cytochrome c oxidase vesicles. Capitanio N; Capitanio G; De Nitto E; Villani G; Papa S FEBS Lett; 1991 Aug; 288(1-2):179-82. PubMed ID: 1652471 [TBL] [Abstract][Full Text] [Related]
3. Interactions involving the cyanine dye, diS-C3-(5), cytochrome c and liposomes and their implications for estimations of delta psi in cytochrome c oxidase-reconstituted proteoliposomes. Singh AP; Chanady GA; Nicholls P J Membr Biol; 1985; 84(2):183-90. PubMed ID: 2987504 [TBL] [Abstract][Full Text] [Related]
4. Cyanine and safranine dyes as membrane potential probes in cytochrome c oxidase reconstituted proteoliposomes. Singh AP; Nicholls P J Biochem Biophys Methods; 1985 Aug; 11(2-3):95-108. PubMed ID: 2993401 [TBL] [Abstract][Full Text] [Related]
5. The effects of pH and ionic strength on cytochrome c oxidase steady-state kinetics reveal a catalytic and a non-catalytic interaction domain for cytochrome c. Sinjorgo KM; Steinebach OM; Dekker HL; Muijsers AO Biochim Biophys Acta; 1986 Jun; 850(1):108-15. PubMed ID: 3011088 [TBL] [Abstract][Full Text] [Related]
6. Factors affecting the H+/e- stoichiometry in mitochondrial cytochrome c oxidase: influence of the rate of electron flow and transmembrane delta pH. Capitanio N; Capitanio G; Demarinis DA; De Nitto E; Massari S; Papa S Biochemistry; 1996 Aug; 35(33):10800-6. PubMed ID: 8718871 [TBL] [Abstract][Full Text] [Related]
7. Kinetic characterization of cytochrome c oxidase from Bacillus subtilis. de Vrij W; Konings WN Eur J Biochem; 1987 Aug; 166(3):581-7. PubMed ID: 3038545 [TBL] [Abstract][Full Text] [Related]
8. Monitoring of the membrane potential in proteoliposomes with incorporated cytochrome-c oxidase using the fluorescent dye indocyanine. Ivashchuk-Kienbaum YA J Membr Biol; 1996 Jun; 151(3):247-59. PubMed ID: 8661512 [TBL] [Abstract][Full Text] [Related]
9. Influence of non-esterified fatty acids on respiratory control of reconstituted cytochrome-c oxidase. Thiel C; Kadenbach B FEBS Lett; 1989 Jul; 251(1-2):270-4. PubMed ID: 2546826 [TBL] [Abstract][Full Text] [Related]
10. Variations on the "dilution" method for reconstituting cytochrome c oxidase into membrane vesicles. Ramírez J; Calahorra M; Peña A Anal Biochem; 1987 May; 163(1):100-6. PubMed ID: 3039865 [TBL] [Abstract][Full Text] [Related]
11. Influence of buffer composition, membrane lipids and proteases on the kinetics of reconstituted cytochrome-c oxidase from bovine liver and heart. Büge U; Kadenbach B Eur J Biochem; 1986 Dec; 161(2):383-90. PubMed ID: 3023093 [TBL] [Abstract][Full Text] [Related]
12. The steady-state rate equation for cytochrome c oxidase based on a minimal kinetic scheme. Malmström BG; Andréasson LE J Inorg Biochem; 1985; 23(3-4):233-42. PubMed ID: 2991462 [TBL] [Abstract][Full Text] [Related]
13. Quantitative analysis of the proton and charge stoichiometry of cytochrome c oxidase from beef heart reconstituted into phospholipid vesicles. Sigel E; Carafoli E Eur J Biochem; 1980 Oct; 111(2):299-306. PubMed ID: 6257505 [TBL] [Abstract][Full Text] [Related]
14. Kinetics of the interaction of cytochrome c oxidase of Paracoccus denitrificans with Paracoccus and mitochondrial cytochrome c. Smith L; Bolgiano B; Davies HC Prog Clin Biol Res; 1988; 274():619-35. PubMed ID: 2841681 [TBL] [Abstract][Full Text] [Related]
15. The concept of high- and low-affinity reactions in bovine cytochrome c oxidase steady-state kinetics. Sinjorgo KM; Meijling JH; Muijsers AO Biochim Biophys Acta; 1984 Oct; 767(1):48-56. PubMed ID: 6091751 [TBL] [Abstract][Full Text] [Related]
16. Energized transport of potassium ions in the absence of valinomycin by cytochrome c oxidase-reconstituted vesicles. Singh AP; Nicholls P Biochim Biophys Acta; 1984 Nov; 777(2):194-200. PubMed ID: 6091755 [TBL] [Abstract][Full Text] [Related]
17. The charge stoichiometry of cytochrome c oxidase in the reconstituted system. Sigel E; Carafoli E J Biol Chem; 1979 Nov; 254(21):10572-4. PubMed ID: 40970 [TBL] [Abstract][Full Text] [Related]
18. Surface plasmon resonance studies of complex formation between cytochrome c and bovine cytochrome c oxidase incorporated into a supported planar lipid bilayer. II. Binding of cytochrome c to oxidase-containing cardiolipin/phosphatidylcholine membranes. Salamon Z; Tollin G Biophys J; 1996 Aug; 71(2):858-67. PubMed ID: 8842224 [TBL] [Abstract][Full Text] [Related]
19. The mechanism of transmembrane delta muH+ generation in mitochondria by cytochrome c oxidase. Lorusso M; Capuano F; Boffoli D; Stefanelli R; Papa S Biochem J; 1979 Jul; 182(1):133-47. PubMed ID: 40546 [TBL] [Abstract][Full Text] [Related]
20. Cytochrome c peroxidase activity of bovine heart cytochrome oxidase incorporated in liposomes and generation of membrane potential. Miki T; Orii Y J Biochem; 1986 Sep; 100(3):735-45. PubMed ID: 3023315 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]