These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 7599256)

  • 1. Separation, real-time migration monitoring and selective zone retrieval using a computer controlled system for automated analysis.
    Gombocz E; Cortez E
    Appl Theor Electrophor; 1995; 4(4):197-209. PubMed ID: 7599256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid microwell polymerase chain reaction with subsequent ultrathin-layer gel electrophoresis of DNA.
    Shandrick S; Ronai Z; Guttman A
    Electrophoresis; 2002 Feb; 23(4):591-5. PubMed ID: 11870770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrathin-layer gel electrophoresis of biopolymers.
    Guttman A; Rónai Z
    Electrophoresis; 2000 Dec; 21(18):3952-64. PubMed ID: 11192118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated genetic analysis.
    Mayrand PE; Robertson J; Ziegle J; Hoff LB; McBride LJ; Chamberlain JS; Kronick MN
    Ann Biol Clin (Paris); 1991; 49(4):224-30. PubMed ID: 1928838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated protein analysis by online detection of laser-induced fluorescence in slab gels and 3-D geometry gels.
    Ventzki R; Stegemann J; Martinez L; de Marco A
    Electrophoresis; 2006 Sep; 27(17):3338-48. PubMed ID: 16850506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA typing with fluorescently tagged short tandem repeats: a sensitive and accurate approach to human identification.
    Frégeau CJ; Fourney RM
    Biotechniques; 1993 Jul; 15(1):100-19. PubMed ID: 8103347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The band areas of proteins determined by fluorescent scanning in the commercial automated gel electrophoresis apparatus.
    Zakharov SF; Kwok SH; Sokoloff H; Chang HT; Radko SP; Chrambach A
    Electrophoresis; 1998 Jul; 19(10):1625-30. PubMed ID: 9719537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Quantitative PCR in the diagnosis of Leishmania].
    Mortarino M; Franceschi A; Mancianti F; Bazzocchi C; Genchi C; Bandi C
    Parassitologia; 2004 Jun; 46(1-2):163-7. PubMed ID: 15305709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A versatile microfabricated platform for electrophoresis of double- and single-stranded DNA.
    Ugaz VM; Lin R; Srivastava N; Burke DT; Burns MA
    Electrophoresis; 2003 Jan; 24(1-2):151-7. PubMed ID: 12652585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The real-time polymerase chain reaction.
    Kubista M; Andrade JM; Bengtsson M; Forootan A; Jonák J; Lind K; Sindelka R; Sjöback R; Sjögreen B; Strömbom L; Ståhlberg A; Zoric N
    Mol Aspects Med; 2006; 27(2-3):95-125. PubMed ID: 16460794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An inexpensive microslab gel DNA electrophoresis system with real-time fluorescence detection.
    Chen X; Ugaz VM
    Electrophoresis; 2006 Feb; 27(2):387-93. PubMed ID: 16342324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Capillary sample introduction of polymerase chain reaction (PCR) products separated in ultrathin slab gels.
    Bullard KM; Hietpas PB; Ewing AG
    Electrophoresis; 1998 Jan; 19(1):71-5. PubMed ID: 9511865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the ALF DNA sequencer for high-speed sizing of short tandem repeat alleles.
    Decorte R; Cassiman JJ
    Electrophoresis; 1996 Oct; 17(10):1542-9. PubMed ID: 8957177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A standard curve based method for relative real time PCR data processing.
    Larionov A; Krause A; Miller W
    BMC Bioinformatics; 2005 Mar; 6():62. PubMed ID: 15780134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Use of the real-time RT-PCR method for investigation of small stable RNA expression level in human epidermoid carcinoma cells A431].
    Nikitina TV; Nazarova NIu; Tishchenko LI; Tuohimaa P; Sedova VM
    Tsitologiia; 2003; 45(4):392-402. PubMed ID: 14520871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Separation of DNA sequencing fragments using an automated capillary electrophoresis instrument.
    Karger AE
    Electrophoresis; 1996 Jan; 17(1):144-51. PubMed ID: 8907532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-throughput separation of DNA and proteins by three-dimensional geometry gel electrophoresis: feasibility studies.
    Ventzki R; Stegemann J
    Electrophoresis; 2003 Dec; 24(24):4153-60. PubMed ID: 14679562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid separation and laser-induced fluorescence detection of mutated DNA by capillary electrophoresis in a self-coating, low-viscosity polymer matrix.
    Du M; Flanagan JH; Lin B; Ma Y
    Electrophoresis; 2003 Sep; 24(18):3147-53. PubMed ID: 14518037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of a capillary zone electrophoresis system versus a conventional agarose gel system for routine serum protein separation and monoclonal component typing.
    Roudiere L; Boularan AM; Bonardet A; Vallat C; Cristol JP; Dupuy AM
    Clin Lab; 2006; 52(1-2):19-27. PubMed ID: 16506360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA analysis on electrophoretic microchips: effect of operational variables.
    Ronai Z; Barta C; Sasvari-Szekely M; Guttman A
    Electrophoresis; 2001 Jan; 22(2):294-9. PubMed ID: 11288897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.