BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 7599937)

  • 1. Protein kinase A and nicotinic activation of bovine adrenal tyrosine hydroxylase.
    Marley PD; Thomson KA; Bralow RA
    Br J Pharmacol; 1995 Apr; 114(8):1687-93. PubMed ID: 7599937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of nicotinic responses of bovine adrenal chromaffin cells by the protein kinase C inhibitor, Ro 31-8220.
    Marley PD; Thomson KA
    Br J Pharmacol; 1996 Sep; 119(2):416-22. PubMed ID: 8886429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of tyrosine hydroxylase by pituitary adenylate cyclase-activating polypeptide (PACAP-27) in bovine adrenal chromaffin cells.
    Marley PD; Cheung CY; Thomson KA; Murphy R
    J Auton Nerv Syst; 1996 Sep; 60(3):141-6. PubMed ID: 8912276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nicotinic stimulation of catecholamine synthesis and tyrosine hydroxylase phosphorylation in cervine adrenal medullary chromaffin cells.
    Knowles PJ; Douglas SA; Bunn SJ
    J Neuroendocrinol; 2011 Mar; 23(3):224-31. PubMed ID: 21121973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cholinergic receptor-mediated phosphorylation and activation of tyrosine hydroxylase in cultured bovine adrenal chromaffin cells.
    Pocotte SL; Holz RW; Ueda T
    J Neurochem; 1986 Feb; 46(2):610-22. PubMed ID: 2867129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous measurement of tyrosine hydroxylase activity and phosphorylation in bovine adrenal chromaffin cells.
    Cheah TB; Bobrovskaya L; Gonçalves CA; Hall A; Elliot R; Lengyel I; Bunn SJ; Marley PD; Dunkley PR
    J Neurosci Methods; 1999 Mar; 87(2):167-74. PubMed ID: 11230813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of protein kinase C in nicotinic responses of bovine chromaffin cells.
    Loneragan K; Cheah TB; Bunn SJ; Marley PD
    Eur J Pharmacol; 1996 Sep; 311(1):87-94. PubMed ID: 8884241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tyrosine hydroxylase in bovine adrenal chromaffin cells: angiotensin II-stimulated activity and phosphorylation of Ser19, Ser31, and Ser40.
    Bobrovskaya L; Cheah TB; Bunn SJ; Dunkley PR
    J Neurochem; 1998 Jun; 70(6):2565-73. PubMed ID: 9603223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ca2+ -dependent activation of tyrosine hydroxylase involves MEK1.
    Griffiths J; Marley PD
    Neuroreport; 2001 Aug; 12(12):2679-83. PubMed ID: 11522947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Ca++/calmodulin-dependent protein kinase II inhibitors KN62 and KN93, and their inactive analogues KN04 and KN92, inhibit nicotinic activation of tyrosine hydroxylase in bovine chromaffin cells.
    Marley PD; Thomson KA
    Biochem Biophys Res Commun; 1996 Apr; 221(1):15-8. PubMed ID: 8660326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro phosphorylation of bovine adrenal chromaffin cell tyrosine hydroxylase by endogenous protein kinases.
    George RJ; Haycock JW; Johnston JP; Craviso GL; Waymire JC
    J Neurochem; 1989 Jan; 52(1):274-84. PubMed ID: 2562809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of forskolin and prostaglandin E1 on stimulus secretion coupling in cultured bovine adrenal chromaffin cells.
    Marriott D; Adams M; Boarder MR
    J Neurochem; 1988 Feb; 50(2):616-23. PubMed ID: 2826702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein kinase A coordinately regulates both basal expression and cyclic AMP-mediated induction of three catecholamine-synthesizing enzyme genes.
    Hwang O; Park SY; Kim KS
    J Neurochem; 1997 Jun; 68(6):2241-7. PubMed ID: 9166715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tyrosine hydroxylase phosphorylation in bovine adrenal chromaffin cells: the role of intracellular Ca2+ in the histamine H1 receptor-stimulated phosphorylation of Ser8, Ser19, Ser31, and Ser40.
    Bunn SJ; Sim AT; Herd LM; Austin LM; Dunkley PR
    J Neurochem; 1995 Mar; 64(3):1370-8. PubMed ID: 7861170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of tyrosine hydroxylase by histamine in bovine chromaffin cells.
    Marley PD; Robotis R
    J Auton Nerv Syst; 1998 May; 70(1-2):1-9. PubMed ID: 9686897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histamine-induced increases in cyclic AMP levels in bovine adrenal medullary cells.
    Marley PD; Thomson KA; Jachno K; Johnston MJ
    Br J Pharmacol; 1991 Dec; 104(4):839-46. PubMed ID: 1725765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of tyrosine hydroxylase in PC12 cells by the cyclic GMP and cyclic AMP second messenger systems.
    Roskoski R; Roskoski LM
    J Neurochem; 1987 Jan; 48(1):236-42. PubMed ID: 2878973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of cyclic AMP and analogues on neurogenic transmission in the rat tail artery.
    Ouedraogo S; Stoclet JC; Bucher B
    Br J Pharmacol; 1994 Feb; 111(2):625-31. PubMed ID: 8004406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclic AMP enhances acetylcholine (ACh)-induced ion fluxes and catecholamine release by inhibiting Na+, K(+)-ATPase and participates in the responses to ACh in cultured bovine adrenal medullary chromaffin cells.
    Morita K; Minami N; Suemitsu T; Miyasako T; Dohi T
    J Neural Transm Gen Sect; 1995; 100(1):17-26. PubMed ID: 8748660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cholinoceptor regulation of cyclic AMP levels in bovine adrenal medullary cells.
    Anderson K; Robinson PJ; Marley PD
    Br J Pharmacol; 1992 Jun; 106(2):360-6. PubMed ID: 1382780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.