BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 7600158)

  • 1. Fracture pattern and instability of thoracolumbar injuries.
    Kifune M; Panjabi MM; Arand M; Liu W
    Eur Spine J; 1995; 4(2):98-103. PubMed ID: 7600158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graded thoracolumbar spinal injuries: development of multidirectional instability.
    Panjabi MM; Kifune M; Liu W; Arand M; Vasavada A; Oxland TR
    Eur Spine J; 1998; 7(4):332-9. PubMed ID: 9765043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thoracolumbar burst fracture. A biomechanical investigation of its multidirectional flexibility.
    Panjabi MM; Oxland TR; Lin RM; McGowen TW
    Spine (Phila Pa 1976); 1994 Mar; 19(5):578-85. PubMed ID: 8184353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Significant roentgenographic parameters for evaluating the flexibility of acute thoracolumbar burst fractures. An in vitro study.
    Lin RM; Panjabi MM; Oxland TR
    Int Orthop; 1997; 21(2):109-14. PubMed ID: 9195265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical evaluation of a simulated T-9 burst fracture of the thoracic spine with an intact rib cage.
    Perry TG; Mageswaran P; Colbrunn RW; Bonner TF; Francis T; McLain RF
    J Neurosurg Spine; 2014 Sep; 21(3):481-8. PubMed ID: 24949903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stabilization of 2-column thoracolumbar fractures with orthoses: a cadaver model.
    Rubery PT; Brown R; Prasarn M; Small J; Conrad B; Horodyski M; Rechtine G
    Spine (Phila Pa 1976); 2013 Mar; 38(5):E270-5. PubMed ID: 23211532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The load-sharing classification of thoracolumbar fractures: an in vitro biomechanical validation.
    Wang XY; Dai LY; Xu HZ; Chi YL
    Spine (Phila Pa 1976); 2007 May; 32(11):1214-9. PubMed ID: 17495778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multidirectional instability of the thoracic spine due to iatrogenic pedicle injuries during transpedicular fixation. A biomechanical investigation.
    Kothe R; Panjabi MM; Liu W
    Spine (Phila Pa 1976); 1997 Aug; 22(16):1836-42. PubMed ID: 9280019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of single and incremental impact approaches for producing experimental thoracolumbar burst fractures.
    Wang XY; Dai LY; Xu HZ; Chi YL
    J Neurosurg Spine; 2007 Aug; 7(2):199-204. PubMed ID: 17688060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Instability of the lumbar burst fracture and limitations of transpedicular instrumentation.
    Slosar PJ; Patwardhan AG; Lorenz M; Havey R; Sartori M
    Spine (Phila Pa 1976); 1995 Jul; 20(13):1452-61. PubMed ID: 8623064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Axes of motion of thoracolumbar burst fractures.
    Oxland TR; Panjabi MM; Lin RM
    J Spinal Disord; 1994 Apr; 7(2):130-8. PubMed ID: 8003830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validity of the three-column theory of thoracolumbar fractures. A biomechanic investigation.
    Panjabi MM; Oxland TR; Kifune M; Arand M; Wen L; Chen A
    Spine (Phila Pa 1976); 1995 May; 20(10):1122-7. PubMed ID: 7638654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stepwise resection of the posterior ligamentous complex for stability of a thoracolumbar compression fracture: An in vitro biomechanical investigation.
    Li Y; Shen Z; Huang M; Wang X
    Medicine (Baltimore); 2017 Sep; 96(35):e7873. PubMed ID: 28858098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Biomechanical stability of unilateral pedicle screw fixation on cadaveric model simulated two-level posterior lumbar interbody fusion].
    Dong JW; Feng F; Zhao WD; Rong LM; Liu XM
    Zhonghua Wai Ke Za Zhi; 2011 May; 49(5):436-9. PubMed ID: 21733402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical characteristics of different regions of the human spine: an in vitro study on multilevel spinal segments.
    Busscher I; van Dieën JH; Kingma I; van der Veen AJ; Verkerke GJ; Veldhuizen AG
    Spine (Phila Pa 1976); 2009 Dec; 34(26):2858-64. PubMed ID: 20010393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional morphology of the spinal canal after endplate, wedge, and burst fractures.
    Kifune M; Panjabi MM; Liu W; Arand M; Vasavada A; Oxland T
    J Spinal Disord; 1997 Dec; 10(6):457-66. PubMed ID: 9438809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro analysis of anterior and posterior fixation in an experimental unstable burst fracture model.
    Kallemeier PM; Beaubien BP; Buttermann GR; Polga DJ; Wood KB
    J Spinal Disord Tech; 2008 May; 21(3):216-24. PubMed ID: 18458594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute thoracolumbar burst fractures: a new view of loading mechanisms.
    Langrana NA; Harten RD RD; Lin DC; Reiter MF; Lee CK
    Spine (Phila Pa 1976); 2002 Mar; 27(5):498-508. PubMed ID: 11880835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro analysis of the segmental flexibility of the thoracic spine.
    Wilke HJ; Herkommer A; Werner K; Liebsch C
    PLoS One; 2017; 12(5):e0177823. PubMed ID: 28520819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical evaluation of short-segment posterior instrumentation with and without crosslinks in a human cadaveric unstable thoracolumbar burst fracture model.
    Wahba GM; Bhatia N; Bui CN; Lee KH; Lee TQ
    Spine (Phila Pa 1976); 2010 Feb; 35(3):278-85. PubMed ID: 20075769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.