These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 7600158)

  • 81. Postfracture instability of vertebrae with simulated defects can be predicted from computed tomography data.
    Windhagen H; Hipp JA; Hayes WC
    Spine (Phila Pa 1976); 2000 Jul; 25(14):1775-81. PubMed ID: 10888945
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Effects of cement augmentation on the mechanical stability of multilevel spine after vertebral compression fracture.
    Tan E; Wang T; Pelletier MH; Walsh WR
    J Spine Surg; 2016 Jun; 2(2):111-21. PubMed ID: 27683707
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Total motion generated in the unstable thoracolumbar spine during management of the typical trauma patient: a comparison of methods in a cadaver model.
    Prasarn ML; Zhou H; Dubose D; Rossi GD; Conrad BP; Horodyski M; Rechtine GR
    J Neurosurg Spine; 2012 May; 16(5):504-8. PubMed ID: 22385085
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Spinal stability and intersegmental muscle forces. A biomechanical model.
    Panjabi M; Abumi K; Duranceau J; Oxland T
    Spine (Phila Pa 1976); 1989 Feb; 14(2):194-200. PubMed ID: 2922640
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Internal pressure measurements during burst fracture formation in human lumbar vertebrae.
    Ochia RS; Ching RP
    Spine (Phila Pa 1976); 2002 Jun; 27(11):1160-7. PubMed ID: 12045511
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Which traumatic spinal injury creates which degree of instability? A systematic quantitative review.
    Liebsch C; Wilke HJ
    Spine J; 2022 Jan; 22(1):136-156. PubMed ID: 34116217
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Experimental study of atlas injuries. I. Biomechanical analysis of their mechanisms and fracture patterns.
    Panjabi MM; Oda T; Crisco JJ; Oxland TR; Katz L; Nolte LP
    Spine (Phila Pa 1976); 1991 Oct; 16(10 Suppl):S460-5. PubMed ID: 1801253
    [TBL] [Abstract][Full Text] [Related]  

  • 88. The onset and progression of spinal injury: a demonstration of neutral zone sensitivity.
    Oxland TR; Panjabi MM
    J Biomech; 1992 Oct; 25(10):1165-72. PubMed ID: 1400516
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Sagittal range of motion after a spinal fracture: does ROM correlate with functional outcome?
    Post RB; Leferink VJ
    Eur Spine J; 2004 Oct; 13(6):489-94. PubMed ID: 15083351
    [TBL] [Abstract][Full Text] [Related]  

  • 90. In vivo axial rotations and neutral zones of the thoracolumbar spine.
    Kumar S; Panjabi MM
    J Spinal Disord; 1995 Aug; 8(4):253-63. PubMed ID: 8547765
    [TBL] [Abstract][Full Text] [Related]  

  • 91. The significance of rotation in fracture-separation of the articular pillar of a lower cervical vertebra. A clinical and cadaveric study.
    Korres DS; Nikiforidis P; Papandreou N; Zoubos AB; Babis GC; Tsarouchas I; Lycomitros V
    Acta Orthop Scand Suppl; 1997 Oct; 275():17-20. PubMed ID: 9385258
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Experimental Analysis of Fabricated Synthetic Midthoracic Paediatric Spine as Compared to the Porcine Spine Based on Range of Motion (ROM).
    Muhayudin NA; Basaruddin KS; Daud R; McEvoy F; Tansey
    Appl Bionics Biomech; 2021; 2021():2799415. PubMed ID: 34608402
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Measuring the neutral zone of spinal motion segments: Comparison of multiple analysis methods to quantify spinal instability.
    Di Pauli von Treuheim T; Torre OM; Mosley GE; Nasser P; Iatridis JC
    JOR Spine; 2020 Jun; 3(2):e1088. PubMed ID: 32613163
    [TBL] [Abstract][Full Text] [Related]  

  • 94. UBC Neck C4-C5: An Anatomically and Biomechanically Accurate Surrogate C4-C5 Functional Spinal Unit.
    Fonseca G; Vakiel P; Cripton PA
    Ann Biomed Eng; 2023 Aug; 51(8):1802-1815. PubMed ID: 37059885
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Substantial vertebral body osteophytes protect against severe vertebral fractures in compression.
    Wagnac E; Aubin CÉ; Chaumoître K; Mac-Thiong JM; Ménard AL; Petit Y; Garo A; Arnoux PJ
    PLoS One; 2017; 12(10):e0186779. PubMed ID: 29065144
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Cervical spine injuries and flexibilities following axial impact with lateral eccentricity.
    Van Toen C; Street J; Oxland TR; Cripton PA
    Eur Spine J; 2015 Jan; 24(1):136-47. PubMed ID: 25344091
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Biomechanics of human thoracolumbar spinal column trauma from vertical impact loading.
    Yoganandan N; Arun MW; Stemper BD; Pintar FA; Maiman DJ
    Ann Adv Automot Med; 2013; 57():155-66. PubMed ID: 24406955
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Biomechanical evaluation of combined short segment fixation and augmentation of incomplete osteoporotic burst fractures.
    Hartensuer R; Gehweiler D; Schulze M; Matuszewski L; Raschke MJ; Vordemvenne T
    BMC Musculoskelet Disord; 2013 Dec; 14():360. PubMed ID: 24359173
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Experimentally induced incomplete burst fractures - a novel technique for calf and human specimens.
    Hartensuer R; Gasch A; Gehweiler D; Schanz S; Schulze M; Matuszewski L; Langer M; Raschke MJ; Vordemvenne T
    BMC Musculoskelet Disord; 2012 Mar; 13():45. PubMed ID: 22443384
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Transmission of force in the lumbosacral spine during backward falls.
    Van Toen C; Sran MM; Robinovitch SN; Cripton PA
    Spine (Phila Pa 1976); 2012 Apr; 37(9):E519-27. PubMed ID: 22076645
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.