These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 7601866)

  • 21. Kinematic and kinetic analysis during forward and backward walking.
    Lee M; Kim J; Son J; Kim Y
    Gait Posture; 2013 Sep; 38(4):674-8. PubMed ID: 23541766
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinematic gait patterns in healthy runners: A hierarchical cluster analysis.
    Phinyomark A; Osis S; Hettinga BA; Ferber R
    J Biomech; 2015 Nov; 48(14):3897-904. PubMed ID: 26456422
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modulation of work and power by the human lower-limb joints with increasing steady-state locomotion speed.
    Schache AG; Brown NA; Pandy MG
    J Exp Biol; 2015 Aug; 218(Pt 15):2472-81. PubMed ID: 26056240
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Muscle mechanical advantage of human walking and running: implications for energy cost.
    Biewener AA; Farley CT; Roberts TJ; Temaner M
    J Appl Physiol (1985); 2004 Dec; 97(6):2266-74. PubMed ID: 15258124
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A kinematic analysis of walking and physical fitness testing in elderly women.
    Kaneko M; Morimoto Y; Kimura M; Fuchimoto K; Fuchimoto T
    Can J Sport Sci; 1991 Sep; 16(3):223-8. PubMed ID: 1655197
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomechanical maturation of joint dynamics during early childhood: updated conclusions.
    Samson W; Van Hamme A; Desroches G; Dohin B; Dumas R; Chèze L
    J Biomech; 2013 Sep; 46(13):2258-63. PubMed ID: 23876715
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A functional knee brace alters joint torque and power patterns during walking and running.
    DeVita P; Torry M; Glover KL; Speroni DL
    J Biomech; 1996 May; 29(5):583-8. PubMed ID: 8707784
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of surface on kinematic gait parameters and lower extremity joints mobility.
    Staszkiewicz R; Chwała W; Forczek W; Laska J
    Acta Bioeng Biomech; 2012; 14(1):75-82. PubMed ID: 22741545
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preferred and energetically optimal gait transition speeds in human locomotion.
    Hreljac A
    Med Sci Sports Exerc; 1993 Oct; 25(10):1158-62. PubMed ID: 8231761
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hip, Knee, and Ankle Osteoarthritis Negatively Affects Mechanical Energy Exchange.
    Queen RM; Sparling TL; Schmitt D
    Clin Orthop Relat Res; 2016 Sep; 474(9):2055-63. PubMed ID: 27287859
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Feature Decoupling for Multimodal Locomotion and Estimation of Knee and Ankle Angles Implemented by Multi-Model Fusion.
    Yu X; Pei Z
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2281-2292. PubMed ID: 38896530
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ankle plantar flexor force production is an important determinant of the preferred walk-to-run transition speed.
    Neptune RR; Sasaki K
    J Exp Biol; 2005 Mar; 208(Pt 5):799-808. PubMed ID: 15755878
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The mechanics and energetics of human walking and running: a joint level perspective.
    Farris DJ; Sawicki GS
    J R Soc Interface; 2012 Jan; 9(66):110-8. PubMed ID: 21613286
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Joint forces in the human pelvis-leg skeleton during walking.
    Röhrle H; Scholten R; Sigolotto C; Sollbach W; Kellner H
    J Biomech; 1984; 17(6):409-24. PubMed ID: 6480617
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Joint kinetics of the ankle and knee when running over obstacles.
    Hreljac A; Stergiou N; Scholten S
    J Sports Med Phys Fitness; 2005 Dec; 45(4):476-82. PubMed ID: 16446678
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Muscle contributions to centre of mass acceleration during turning gait in typically developing children: A simulation study.
    Dixon PC; Jansen K; Jonkers I; Stebbins J; Theologis T; Zavatsky AB
    J Biomech; 2015 Dec; 48(16):4238-45. PubMed ID: 26555714
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Braking and propulsive impulses increase with speed during accelerated and decelerated walking.
    Peterson CL; Kautz SA; Neptune RR
    Gait Posture; 2011 Apr; 33(4):562-7. PubMed ID: 21356590
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative biomechanical analysis of gait in patients with central cord and Brown-Séquard syndrome.
    Gil-Agudo A; Pérez-Nombela S; Pérez-Rizo E; del Ama-Espinosa A; Crespo-Ruiz B; Pons JL
    Disabil Rehabil; 2013; 35(22):1869-76. PubMed ID: 23600711
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Changes in leg movements and muscle activity with speed of locomotion and mode of progression in humans.
    Nilsson J; Thorstensson A; Halbertsma J
    Acta Physiol Scand; 1985 Apr; 123(4):457-75. PubMed ID: 3993402
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamics of below-knee child amputee gait: SACH foot versus Flex foot.
    Schneider K; Hart T; Zernicke RF; Setoguchi Y; Oppenheim W
    J Biomech; 1993 Oct; 26(10):1191-204. PubMed ID: 8253824
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.