BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 7602313)

  • 21. Hypoxia and N6,O2'-dibutyryladenosine 3',5'-cyclic monophosphate, but not nerve growth factor, induce Na+ channels and hypertrophy in chromaffin-like arterial chemoreceptors.
    Stea A; Jackson A; Nurse CA
    Proc Natl Acad Sci U S A; 1992 Oct; 89(20):9469-73. PubMed ID: 1329096
    [TBL] [Abstract][Full Text] [Related]  

  • 22. PSA-NCAM and B-50/GAP-43 are coexpressed by specific neuronal systems of the adult rat mediobasal hypothalamus that exhibit remarkable capacities for morphological plasticity.
    Alonso G; Prieto M; Legrand A; Chauvet N
    J Comp Neurol; 1997 Jul; 384(2):181-99. PubMed ID: 9215717
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Delivery of anti-GAP-43 antibodies into neuroblastoma cells reduces growth cone size.
    Shea TB
    Biochem Biophys Res Commun; 1994 Aug; 203(1):459-64. PubMed ID: 8074690
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nitric oxide donors enhance neurotrophin-induced neurite outgrowth through a cGMP-dependent mechanism.
    Hindley S; Juurlink BH; Gysbers JW; Middlemiss PJ; Herman MA; Rathbone MP
    J Neurosci Res; 1997 Feb; 47(4):427-39. PubMed ID: 9057136
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Overexpression of HuD accelerates neurite outgrowth and increases GAP-43 mRNA expression in cortical neurons and retinoic acid-induced embryonic stem cells in vitro.
    Anderson KD; Sengupta J; Morin M; Neve RL; Valenzuela CF; Perrone-Bizzozero NI
    Exp Neurol; 2001 Apr; 168(2):250-8. PubMed ID: 11259113
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of cyclic AMP on neuritic outgrowth in explant cultures of developing chick olfactory epithelium.
    Johnson RR; Farbman AI; Gonzales F
    J Neurobiol; 1988 Dec; 19(8):681-93. PubMed ID: 2466949
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cyclic AMP signaling contributes to neural plasticity and hyperexcitability in AH sensory neurons following intestinal Trichinella spiralis-induced inflammation.
    Chen Z; Suntres Z; Palmer J; Guzman J; Javed A; Xue J; Yu JG; Cooke H; Awad H; Hassanain HH; Cardounel AJ; Christofi FL
    Int J Parasitol; 2007 Jun; 37(7):743-61. PubMed ID: 17307183
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cellular distribution of oxygen sensor candidates-oxidases, cytochromes, K+-channels--in the carotid body.
    Kummer W; Yamamoto Y
    Microsc Res Tech; 2002 Nov; 59(3):234-42. PubMed ID: 12384967
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Autocrine and paracrine actions of ATP in rat carotid body.
    Tse A; Yan L; Lee AK; Tse FW
    Can J Physiol Pharmacol; 2012 Jun; 90(6):705-11. PubMed ID: 22509744
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chronic hypoxia in vitro increases volume of dissociated carotid body chemoreceptors.
    Mills L; Nurse C
    Neuroreport; 1993 Jun; 4(6):619-22. PubMed ID: 8102258
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hypoxia induces neurite outgrowth in PC12 cells that is mediated through adenosine A2A receptors.
    O'Driscoll CM; Gorman AM
    Neuroscience; 2005; 131(2):321-9. PubMed ID: 15708476
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of chemoreceptor sensitivity in the carotid body: the role of presynaptic sensory nerves.
    McDonald DM
    Fed Proc; 1980 Jul; 39(9):2627-35. PubMed ID: 6105093
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interleukin-6 increases intracellular Ca2+ concentration and induces catecholamine secretion in rat carotid body glomus cells.
    Fan J; Zhang B; Shu HF; Zhang XY; Wang X; Kuang F; Liu L; Peng ZW; Wu R; Zhou Z; Wang BR
    J Neurosci Res; 2009 Sep; 87(12):2757-62. PubMed ID: 19396873
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carotid body adaptation to hypoxia: cellular and molecular mechanisms in vitro.
    Nurse CA
    Biol Signals; 1995; 4(5):286-91. PubMed ID: 8704829
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gene expression analyses reveal metabolic specifications in acute O
    Gao L; Bonilla-Henao V; García-Flores P; Arias-Mayenco I; Ortega-Sáenz P; López-Barneo J
    J Physiol; 2017 Sep; 595(18):6091-6120. PubMed ID: 28718507
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of ET-1 in hypoxia-induced mitosis of cultured rat carotid body chemoreceptors.
    Paciga M; Vollmer C; Nurse C
    Neuroreport; 1999 Dec; 10(18):3739-44. PubMed ID: 10716201
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Role of cyclic nucleotides in carotid chemoreception].
    Samoĭlov VO; Ponomarenko GN
    Biull Eksp Biol Med; 1991 Jun; 111(6):610-2. PubMed ID: 1654163
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of cell culture conditions, nerve growth factor, dexamethasone, and cyclic AMP on adrenal chromaffin cells in vitro.
    Unsicker K; Rieffert B; Ziegler W
    Adv Biochem Psychopharmacol; 1980; 25():51-9. PubMed ID: 6255757
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Induction of axon-like and dendrite-like processes in neuroblastoma cells.
    Wu G; Fang Y; Lu ZH; Ledeen RW
    J Neurocytol; 1998 Jan; 27(1):1-14. PubMed ID: 9530995
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stimulation of adrenergic development in neural crest cultures by a reconstituted basement membrane-like matrix is inhibited by agents that elevate cAMP.
    Maxwell GD; Forbes ME
    J Neurosci Res; 1990 Feb; 25(2):172-9. PubMed ID: 1690819
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.